J.ophthalmol.(Ukraine).2022;6:50-58.

http://doi.org/10.31288/oftalmolzh202265058

Received: 23.10.2022; Accepted: 29.11.2022; Published on-line: 21.12.2022


Heat exchange in the human eye: a review

O. S. Zadorozhnyy 1,  A. R. Korol 1,   V. O. Naumenko  1,  N. V. Pasyechnikova 1,  L. L. Butenko 2

1 SI "The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine"

2 Odesa National Medical Institute

Odesa (Ukraine)

TO CITE THIS ARTICLE: Zadorozhnyy OS, Korol AR, Naumenko VO, Pasyechnikova NV, Butenko LL. Heat exchange in the human eye: a review. J.ophthalmol.(Ukraine).2022;6:50-58.   http://doi.org/10.31288/oftalmolzh202265058

 

Thermal homeostasis is required in order to ensure that the normal function of the human body is maintained under various environmental conditions. Various pathological processes impacting metabolism in tissues and organs (e.g., the human eye) are accompanied by changes in relative internal heat balance. Although numerous relevant studies have been conducted, heat exchange processes in the human eye have not been yet sufficiently investigated. Further research on the features of heat exchange in the eye is required not only to improve our knowledge in the field of physiology of the eye, but also to use the data obtained for developing novel advanced techniques for eye disease diagnosis and treatment.

Keywords: heat exchange in the eye, ocular surface temperature, heat flux, intraocular temperature, mathematical modeling

 

References

1.Guyton AC, Hall JE. Textbook of Medical Physiology. 11th ed. Amsterdam: Elsevier Saunders; 2006. 890 p.

2.Freeman RD, Fatt I. Environmental influences on ocular temperature. Invest Ophthalmol. 1973;12(8):596-602.

3.Mayer SA, Sessler VA. Therapeutic Hypothermia. New York: Marcel Dekker; 2005. 402 p.

Crossref

4.Kiyatkin EA. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature (Austin). 2019;6(4):271-333.

Crossref  PubMed

5.Tsariov А. Target temperature management in clinical practice of intensive care for critical states. Emergency Medicine. 2014;7(62):186-191.

Crossref

6.Avetisov SE, Novikov IA, Lutsevich EE, Reyn ES. Use of infrared thermography in ophthalmology. Vestn Oftalmol. 2017;133(6):99 105.

Crossref  PubMed 

7.Crossref  PubMed

8.Martin DK, Fatt I. The presence of a contact lens induces a very small increase in the anterior corneal surface temperature. Acta Ophthalmol (Copenh). 1986;64(5):512-518.

Crossref  PubMed

9.Kudinov VA, Kartashov EM, Stefanyuk EV. Technical thermodynamics and heat transfer. Textbook for Academic Baccalaureate. Мoscow: Yurait; 2019. 454 p. 

10.Savvin VN, Korotkova OL, Shishkin GP. The use of thermodynamic approaches in assessing the state of a living system. Vyatka Medical Bulletin. 2017; 2:40-44.

11.Lucia U. Bioengineering thermodynamics of biological cells. Theor Biol Med Model. 2015;12:29.

Crossref  PubMed

12.Grischenko TG, Dekusha LV, Vorobiov LY. Heat flow measuring: theory, metrology, practice. Book 1. Methods and means of heat flow measuring. Kiev: Institute of Engineering Thermophysics of NASU; 2017. 438 p.

13.Mapstone R. Determinants of corneal temperature. Br J Ophthalmol. 1968;52(10):729-41.

Crossref  PubMed

14.Purslow C, Wolffsohn J. The relation between physical properties of the anterior eye and ocular surface temperature. Optom Vis Sci. 2007;84(3):197-201.

Crossref  PubMed

15.Emery AF, Kramar P, Guy AW, Lin, JC. Microwave induced temperature rises in rabbit eyes in cataract research. J Heat Transfer. 1975;97(1):123-128.

Crossref  

16.Holmberg A. The temperature of the eye during the application of hot packs, and after milk injections. Acta Ophthalmol (Copenh). 1952;30(4):348-364.

Crossref  

17.Zeiss E. Über Wärmestrahlungsmessungen an der lebenden menschlichen Hornhaut. Arch Augenheilkd. 1930;102:523–550.

18.Mapstone R. Measurement of corneal temperature. Exp Eye Res. 1968;7(2):237-43.

Crossref  PubMed

19.Purslow C, Wolffsohn JS. Ocular surface temperature: a review. Eye Contact Lens. 2005;31(3):117-123.

Crossref  PubMed

20.Buiko AS, Tsyikalo AL, Terenteva LS. Liquid crystal thermography in oncoophthalmology. J Ophthalmol (Ukraine). 1977;2:110-114.

21.Guo S, Wu K, Li C, Wang H, Sun Z, Xi D, Zhang S, Ding W, Zaghloul ME, Wang C, Castro FA, Yang D, Zhao Y. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter. 2021;4(3):969-985.

Crossref  PubMed

22.Moreddu R, Elsherif M, Butt H, Vigolo D, Yetisen AK. Contact lenses for continuous corneal temperature monitoring. RSC Adv. 2019;9(20):11433-11442.

Crossref  PubMed

23.Chang TC, Hsiao YL, Liao SL. Application of digital infrared thermal imaging in determining inflammatory state and follow-up effect of methylprednisolone pulse therapy in patients with Graves’ ophthalmopathy. Graefes Arch Clin Exp Ophthalmol. 2008;246(1):45-9.

Crossref  PubMed

24.Kawasaki S, Mizoue S, Yamaguchi M, Shiraishi A, Zheng X, Hayashi Y, Ohashi Y. Evaluation of filtering bleb function by thermography. Br J Ophthalmol. 2009;93(10):1331-6.

Crossref  PubMed

25.Wang C, Jiao H, Anatychuk L, Pasyechnikova N, Naumenko V, Zadorozhnyy O, Vikhor L, Kobylianskyi R, Fedoriv R, Kochan O. Development of a Temperature and Heat Flux Measurement System Based on Microcontroller and its Application in Ophthalmology. Measurement Science Review. 2022;22(2):73-79.

Crossref

26.Anatychuk L, Pasyechnikova N, Zadorozhnyy O, Nazaretian R, Myrnenko V, Kobylyanskyi R, Gavrilyuk N. Original device and approaches to the study of temperature distribution in various eye segments (experimental study). J Ophthalmol (Ukraine). 2015;6:50-53.

Crossref 

27.Schwartz B, Feller MR. Temperature gradients in the rabbit eye. Invest Ophthalmol. 1962;1:513-21.

28.Nazaretian RE, Zadorozhnyy OS, Umanets NN, Naumenko VA, Pasyechnikova NV, Shafranskii VV. Intraocular temperature changes during vitrectomy procedure.  J Ophthalmol (Ukraine). 2018;6:30-4.

Crossref 

29.Iguchi Y, Asami T, Ueno S, Ushida H, Maruko R, Oiwa K, Terasaki H. Changes in vitreous temperature during intravitreal surgery. Invest Ophthalmol. 2014;55(4):2344-9.

Crossref  PubMed

30.Mansouri K, Gillmann K, Rao HL, Szurman P, Weinreb RN; ARGOS -2 Study Group. Measurement of intraocular temperature in glaucoma: week-day and seasonal fluctuations. Br J Ophthalmol. 2022;bjophthalmol-2021-320495.

Crossref  PubMed

31.Horven I. Corneal temperature in normal subjects and arterial occlusive disease. Acta Ophthalmol (Copenh). 1975;53(6):863-874.

Crossref  PubMed

32.Alio` J, Padron M. Influence of age on the temperature of the anterior segment of the eye: measurements by infrared thermometry. Ophthalmic Res. 1982;14:153-159.

Crossref  PubMed

33.Martin DK, Fatt I. The presence of a contact lens induces a very small increase in the anterior corneal surface temperature. Acta Ophthalmol (Copenh). 1986;64(5):512-518.

Crossref  PubMed

34.Koçak I, Orgül S, Flammer J. Variability in the measurement of corneal temperature using a noncontact infrared thermometer. Ophthalmologica. 1999;213(6):345-349.

Crossref  PubMed

35.Morgan PB, Soh MP, Efron N, Tullo AB. Potential Applications of Ocular Thermography. Optom Vis Sci. 1993;70(7):568-76.

Crossref  PubMed

36.Craig JP, Singh I, Tomlinson A, Morgan PB, Efron N. The role of tear physiology in ocular surface temperature. Eye (Lond). 2000;14(4):635-641.

Crossref  PubMed

37.Tan L, Cai ZQ, Lai NS. Accuracy and sensitivity of the dynamic ocular thermography and inter-subjects ocular surface temperature (OST) in Chinese young adults. Cont Lens Anterior Eye. 2009;32(2):78-83.

Crossref  PubMed

38.Kamao T, Yamaguchi M, Kawasaki S, Mizoue S, Shiraishi A, Ohashi Y. Screening for dry eye with newly developed ocular surface thermographer. Am J Ophthalmol. 2011;151(5):782-791.e1.

Crossref  PubMed

39.Sodi A, Matteoli S, Giacomelli G, Finocchio L, Corvi A, Menchini U. Ocular surface temperature in age-related macular degeneration. J Ophthalmol. 2014;2014:281010.Crossref  PubMed

40.Abreau K, Callan C, Kottaiyan R, Zhang A, Yoon G, Aquavella JV, Zavislan J, Hindman HB. Temperatures of the ocular surface, lid, and periorbital regions of sjögren's, evaporative, and aqueous-deficient dry eyes relative to normals. Ocul Surf. 2016;14(1):64-73.

Crossref  PubMed 

41.Anatychuk LI, Pasyechnikova NV, Naumenko VА, Zadorozhnyy OS, Gavrilyuk MV, Kobylianskyi RR. A thermoelectric device for ophthalmic heat flux density measurements: results of piloting in healthy individuals. J Ophthalmol (Ukraine). 2019; 3:45-51.

Crossref 

42.Matteoli S, Vannetti F, Sodi A, Corvi A. Infrared thermographic investigation on the ocular surface temperature of normal subjects. Physiol Meas. 2020;41(4):045003.

Crossref  PubMed

43.Chandrasekar B, Rao AP, Murugesan M, Subramanian S, Sharath D, Manoharan U, Prodip B, Balasubramaniam V. Ocular surface temperature measurement in diabetic retinopathy. Exp Eye Res. 2021;;211:108749.

Crossref  PubMed

44.Mapstone R. Ocular thermography. Br J Ophthalmol. 1970;54(11):751-4.

Crossref  PubMed

45.Haber-Olguin A, Polania-Baron EJ, Trujillo-Trujillo F, Graue Hernandez EO. Thermographic behaviour of the cornea during treatment with two excimer laser platforms. Transl Vis Sci Technol. 2021;10(9):27.

Crossref  PubMed

46.Purslow C, Wolffsohn JS, Santodomingo-Rubido J. The effect of contact lens wear on dynamic ocular surface temperature. Cont Lens Anterior Eye. 2005;28(1):29-36.

Crossref  PubMed

47.Tan JH, Ng EYK, Acharya UR, Chee C. Infrared thermography on ocular surface temperature: A review. Infrared Phys Techn. 2009;52:97-108.

Crossref  

48.Rysä P, Sarvaranta J. Corneal temperature in man and rabbit. Observations made using an infra-red camera and a cold chamber. Acta Ophthalmol (Copenh). 1974;52(6):810-6.

Crossref  PubMed

49.Petznick A, Tan JH, Boo SK, Lee SY, Acharya UR, Tong L. Repeatability of a new method for measuring tear evaporation rates. Optom Vis Sci. 2013;90(4):366-371.

Crossref  PubMed

50.Shah AM, Galor A. Impact of Ocular Surface Temperature on Tear Characteristics: Current Insights. Clin Optom (Auckl). 2021;13:51-62.

Crossref  PubMed

51.Morgan PB, Tullo A, Efron N. Infrared thermography of the tear film in dry eye. Eye (Lond). 1995;9:615-618.

Crossref  PubMed

52.Tan LL, Sanjay S, Morgan PB. Screening for dry eye disease using infrared ocular thermography. Cont Lens Anterior Eye. 2016;39(6):442-449.

Crossref  PubMed 

53.Matteoli S, Favuzza E, Mazzantini L, Aragona P, Cappelli S, Corvi A, Mencucci R. Ocular surface temperature in patients with evaporative and aqueous-deficient dry eyes: a thermographic approach. Physiol Meas. 2017;38(8):1503-1512.

Crossref  PubMed

54.García-Porta N, Gantes-Nuñez FJ, Tabernero J, Pardhan S. Characterization of the ocular surface temperature dynamics in glaucoma subjects using long-wave infrared thermal imaging. J Opt Soc Am A Opt Image Sci Vis. 2019;36(6):1015-1021.

Crossref  PubMed

55.Giannetto C, Di Pietro S, Falcone A, Pennisi M, Giudice E, Piccione G, Acri G. Thermographic ocular temperature correlated with rectal temperature in cats. J Therm Biol. 2021;102:103104.

Crossref  PubMed 

56.Dorokhova O, Zborovska O, Meng G, Zadorozhnyy O. Temperature of the ocular surface in the projection of the ciliary body in rabbits. J Ophthalmol (Ukraine). 2020;2(493):65-69.Crossref

57.Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature. 2020;7(4):321-362.

Crossref  PubMed

58.Baker FC, Waner JI, Vieira EF, Taylor SR, Driver HS, Mitchell D. Sleep and 24 hour body temperatures: a comparison in young men, naturally cycling women and women taking hormonal contraceptives. J Physiol. 2001;530(3):565-574.

Crossref  PubMed

59.Morgan PB, Soh MP, Efron N. Corneal surface temperature decreases with age. Cont Lens Anterior Eye. 1999;22(1):11-13.

Crossref  PubMed

60.Spaide RF. Age-related choroidal atrophy. Am J Ophthalmol. 2009;147(5):801-10.

Crossref  PubMed

61.Anatychuk L, Pasyechnikova N, Naumenko V, Kobylianskyi R, Zadorozhnyy O.  Temperature and heat flux density of the eye surface in healthy individuals with different subfoveal thickness of the choroid. Acta Ophthalmol. 2022;100: S267.

Crossref 

62.Sigler EJ, Randolph JC. Comparison of macular choroidal thickness among patients older than age 65 with early atrophic age-related macular degeneration and normals. Invest Ophthalmol. 2013;54(9):6307-13.

Crossref  PubMed

63.Anatychuk LI, Pasyechnikova NV, Naumenko VА, Zadorozhnyy OS, Hramenko NI, Kobylianskyi RR. Temperature of and heat flux density from the external ocular surface in diabetic retinopathy patients: a pilot study. J Ophthalmol (Ukraine). 2019;6:3-6.

Crossref

64.Sudhalkar A, Chhablani JK, Venkata A, Raman R, Rao PS, Jonnadula GB. Choroidal thickness in diabetic patients of Indian ethnicity. Indian J Ophthalmol. 2015;63(12):912-6.

Crossref  PubMed

65.Gugleta K, Orgül S, Flammer J. Is corneal temperature correlated with blood-flow velocity in the ophthalmic artery? Curr Eye Res. 1999;19(6):496-501.

Crossref  PubMed

66.Galassi F, Giambene B, Corvi A, Falaschi G. Evaluation of ocular surface temperature and retrobulbar haemodynamics by infrared thermography and colour Doppler imaging in patients with glaucoma. Br. J. Ophthalmol. 2007;91:878–881.

Crossref  PubMed

67.Morgan PB, Smyth JV, Tullo AB, Efron N. Ocular temperature in carotid artery stenosis. Optom Vis Sci. 1999;76(12):850-4.

Crossref  PubMed

68.Sodi A, Giambene B, Falaschi G, Caputo R, Innocenti B, Corvi A, Menchini U. Ocular surface temperature in central retinal vein occlusion: preliminary data. Eur J Ophthalmol. 2007;17(5):755-9.

Crossref  PubMed

69.Blomqvist A, Engblom D. Neural mechanisms of inflammation-induced fever. Neuroscientist. 2018;24(4):381-399.

Crossref  PubMed

70.Efron N, Brennan NA, Hore J, Rieper K. Temperature of the hyperemic bulbar conjunctiva. Curr Eye Res. 1988;7(6):615-618.

Crossref  PubMed

71.Klamann MK, Maier AK, Gonnermann J, Klein JP, Bertelmann E, Pleyer U. Ocular surface temperature gradient is increased in eyes with bacterial corneal ulcers. Ophthalmic Res. 2013;49(1):52-6.

Crossref  PubMed

72.Mapstone R. Corneal thermal patterns in anterior uveitis. Br J Ophthalmol. 1968;52(12):917-921.

Crossref  PubMed

73.Kawali AA. Thermography in ocular inflammation. Indian J Radiol Imaging. 2013;23(3):281-3.

Crossref  PubMed  

74.Leshno A, Stern O, Barkana Y, Kapelushnik N, Singer R, Prat DL, Cohen G, Ben-David G, Abrahami D, Huna-Baron R, Skaat A. Ocular surface temperature differences in glaucoma. Eur J Ophthalmol. 2022;32(3):1518-1524.

Crossref  PubMed 

75.Zadorozhnyy OS, Guzun OV, Bratishko AIu, Kustrin TB, Nasinnik IO, Korol AR Infrared thermography of external ocular surface in patients with absolute glaucoma in transscleral cyclophotocoagulation: a pilot study. J Ophthalmol (Ukraine). 2018;2:23-28.

Crossref 

76.Zadorozhnyy OS, Guzun OV, Kustrin TB, Korol AR, Naumenko VA, Pasyechnikova NV. Ocular heat exchange indices in terminal neovascular glaucoma patients with proliferative diabetic retinopathy. J Ophthalmol (Ukraine). 2020;1:10-13.

Crossref 

77.Auker CR, Parver LM, Doyle T, Carpenter DO. Choroidal blood flow. I. Ocular tissue temperature as a measure of flow. Arch Ophthalmol. 1982;100(8):1323-6.

Crossref  PubMed

78.Konieczka K, Koch S, Hauenstein D, Chackathayil TN, Binggeli T, Schoetzau A, Flammer J. Effects of the Glaucoma Drugs Latanoprost and Brimonidine on Corneal Temperature. Transl Vis Sci Technol. 2019;8(3):47.

Crossref  PubMed

79.Merté HJ, Schubert E. Thermographische Untersuchungen. Albrecht von Graefes Arch Klin Ophthalmol. 1971;183:47-52.

Crossref  PubMed

80.Galassi F, Giambene B, Corvi A, Falaschi G, Menchini U. Retrobulbar hemodynamics and corneal surface temperature in glaucoma surgery. Int Ophthalmol. 2008;28(6):399-405.

Crossref  PubMed

81.Fujishima H, Toda I, Yagi Y, Tsubota K. Quantitative evaluation of postsurgical inflammation by infrared radiation thermometer and laser flare-cell meter. J Cataract Refract Surg. 1994;20(4):451-4.

Crossref  PubMed

82.Anatychuk L, Pasyechnikova N, Naumenko V, Kobylianskyi R, Nazaretyan R, Zadorozhnyy O. Prospects of Temperature Management in Vitreoretinal Surgery. Ther Hypothermia Temp Manag. 2021;11(2):117-121.

Crossref  PubMed

83.Zadorozhnyy OS, Savin NV, Buiko AS. Improving the technique for controlled cryogenic destruction of conjunctival tumors located in the projection of the ciliary body onto the sclera: A preliminary report. J Ophthalmol (Ukraine). 2018;5:60-65.

Crossref 

84.Betney S, Morgan PB, Doyle SJ, Efron N. Corneal temperature changes during photorefractive keratectomy. Cornea. 1997;16(2):158-61.

Crossref  PubMed

85.Maldonado-Codina C, Morgan PB, Efron N. Thermal consequences of photorefractive keratectomy. Cornea. 2001;20(5):509-515.

Crossref  PubMed

86.Haber-Olguin A, Polania-Baron EJ, Trujillo-Trujillo F, Graue Hernandez EO. Thermographic Behavior of the Cornea During Treatment With Two Excimer Laser Platforms. Transl Vis Sci Technol. 2021;10(9):27.

Crossref  PubMed

87.Sniegowski MC, Erlanger M, Olson J. Thermal imaging of corneal transplant rejection. Int Ophthalmol. 2018;38(6):2335-2339.

Crossref  PubMed

88.May DR, Freedland RJ, Charles S, Wang C, Bakos J. Ocular hypothermia: anterior chamber perfusion. Br J Ophthalmol. 1983;67(12):808-13.

Crossref  PubMed

89.Schwartz B. Environmental temperature and the ocular temperature gradient. Arch Ophthalmol. 1965;74:237-43.

Crossref  PubMed

90.Anatychuk L, Pasyechnikova N, Zadorozhnyy O, Kobylianskyi R, Nazaretyan R, Myrnenko V. Experimental study of intraocular temperature distribution in the rabbit under various environmental conditions. Acta Ophthalmol. 2016;94:S256.

Crossref 

91.Horiguchi M, Miyake Y. Effect of temperature on electroretinograph readings during closed vitrectomy in humans. Arch Ophthalmol. 1991;109(8):1127-1129.

Crossref  PubMed

92.Landers MB 3rd, Watson JS, Ulrich JN, Quiroz-Mercado H. Determination of retinal and vitreous temperature in vitrectomy. Retina. 2012;32(1):172-6.

Crossref  PubMed

93.Romano MR, Vallejo-Garcia JL, Romano V, Angi M, Vinciguerra P, Costagliola C. Thermodynamics of vitreoretinal surgery. Curr Eye Res. 2013;38(3):371-4.

Crossref  PubMed

94.Shinoda K, Matsumoto SC, Yagura K, Terauchi G, Shoji T, Yoshikawa Y, Igawa Y, Mizota A, Miyake Y. Intraocular Temperature Distribution in Eyes Undergoing Different Types of Surgical Procedures during Vitreous Surgery. J Clin Med. 2022;11(7):2053.

Crossref  PubMed

95.Scott JA. A finite element model of heat transport in the human eye. Phys Med Biol. 1988;33(2):227-41.

Crossref  PubMed

96.Buck B, Lopezcarasa G, Kon Jara VA, Mwanza J, Landers M. Retinal and intravitreal temperature during vitreous surgery. Invest Ophthalmol. 2014;55(13):1932.

Crossref  PubMed

97.Taflove A, Brodwin ME. Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye. IEEE Transactions on Microwave Theory and Techniques. 1975;23(11):888-896,

Crossref

98.Neelakantaswamy PS, Ramakrishnan KP, Microwave-induced hazardous nonlinear thermoelastic vibrations of the ocular lens in the human eye. Journal of Biomechanics. 1979;12(3):205-210.

Crossref  PubMed

99.Lagendijk JJ. A mathematical model to calculate temperature distributions in human and rabbit eyes during hyperthermic treatment. Phys Med Biol. 1982;27(11):1301-11.

Crossref  PubMed

100.Flyckt VM, Raaymakers BW, Lagendijk JJ. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels. Phys Med Biol. 2006;51(19):5007-5021.

Crossref  PubMed

101.Ng EY, Ooi EH. FEM simulation of the eye structure with bio-heat analysis. Comput Methods Programs Biomed. 2006;82(3):268-76.

Crossref  PubMed

102.Ng EY, Ooi EH, Archarya UR. A comparative study between the two-dimensional and three-dimensional human eye models. Math. Comput Model. 2008;48:712–720.

Crossref 

103.Ooi EH, Ng EY. Simulation of aqueous humor hydrodynamics in human eye heat transfer. Comput Biol Med. 2008;38(2):252-62.

Crossref  PubMed

104.Rafiq A, Khanday MA. Thermal behavior of human eye in relation with change in blood perfusion, porosity, evaporation and ambient temperature. J Therm Biol. 2016;62:138-142.

Crossref  PubMed

105.Gokul KC, Gurung DB, Adhikary PR. Thermal effects of eyelid in human eye temperature model. Journal of Applied Mathematics & Informatics. 2014;32(5-6):649-663.

Crossref  

106.Narasimhan A, Jha KK. Bio-heat transfer simulation of retinal laser irradiation. Int J Numer Method Biomed Eng. 2012;28(5):547-59.

Crossref  PubMed

107.Truong LTD, Lesniewski PJ, Wedding AB. Heat transfer simulation in laser irradiated retinal tissues. Biomed Phys Eng Express. 2021;8(1).

Crossref  PubMed

108.Ooi EH, Ang WT, Ng EY. A boundary element model of the human eye undergoing laser thermokeratoplasty. Computers in Biology and Medicine. 2008;38(6):727-737.

Crossref  PubMed

109.Regal S, Troughton J, Delattre R, Djenizian T, Ramuz M. Changes in temperature inside an optomechanical model of the human eye during emulated transscleral cyclophotocoagulation. Biomed Opt Express. 2020;11(8):4548-4559.

Crossref  PubMed

110.Gongal D, Thakur S, Panse A, Pawar R, Yu CQ, Foster CD. Thermal analysis of intraocular electronic display projector visual prosthesis. Numeri Heat Transf A Appl. 2020;78(12):706-716.

Crossref  PubMed

111.Opie NL, Burkitt AN, Meffin H, Grayden DB. Heating of the eye by a retinal prosthesis: modeling, cadaver and in vivo study. IEEE Trans Biomed Eng. 2012;59(2):339-45.

Crossref  PubMed


Disclosures 

Author Contributions: The authors confirm the following contributions to the article—study conception and design: NP; data collection and analysis: OZ, AK and VN; drafting of the manuscript: OZ. All authors read and approved the final manuscript.

Funding sources: The study is a part of the institute’s experimental and clinical research program entitled Heat Exchange in the Eye Depending on the Morphological and Functional State of the Choroid and After Vitreoretinal and Glaucoma Surgery (state registration № 0117U004356).

Conflict of interest: All authors have read the journal’s Author Agreement and Conflict of Interest policy. The authors have no potential conflict of interest to declare.

Abbreviations: DR, diabetic retinopathy; HF, heat flux; IOP, intraocular pressure; IOT, intraocular temperature; IR, infrared; OST, ocular surface temperature