Офтальмол. журн. — 2022. — № 6. — С. 50-58.
УДК 617.7:612.5
http://doi.org/10.31288/oftalmolzh202265058
Особливості теплообміну ока людини (огляд літератури)
О. С. Задорожний 1, д-р мед. наук; А. Р. Король 1, д-р мед. наук; В. О. Науменко 1, д-р мед. наук, професор; Н. В. Пасєчнікова 1, д-р мед. наук, професор, член-кор. НАМН України; Л. Л. Бутенко 2, д-р мед. наук
1 ДУ «Інститут очних хвороб і тканинної терапії ім. В. П. Філатова НАМН України»
2 Одеський національний медичний університет
Одеса (Україна)
ЯК ЦИТУВАТИ: Задорожний О.С. Особливості теплообміну ока людини (огляд літератури) / О. С. Задорожний, А. Р. Король, В. О. Науменко, Н. В. Пасєчнікова, Л. Л. Бутенко // Офтальмол. журн. — 2022. — № 6. — С. 50-58. http://doi.org/10.31288/oftalmolzh202265058
Тепловий гомеостаз потрібен для нормального функціонування організму людини у різних умовах навколишнього середовища. Різноманітні патологічні процеси, які впливають на метаболізм в тканинах та органах, в тому числі в оці людини, супроводжуються зміною відносної внутрішньої теплової рівноваги. Питання теплообміну ока ще залишаються недостатньо вивченими, незважаючи на значний накопичений досвід проведених раніше досліджень. Подальше вивчення особливостей теплообміну ока не лише розширить наші знання у галузі фізіології ока, але також дозволить використовувати отримані дані для створення сучасних методів діагностики та лікування офтальмологічних захворювань.
Ключові слова: теплообмін ока, температура поверхні ока, тепловий потік, внутрішньоочна температура, математичне моделювання
Література
1.Guyton AC, Hall JE. Textbook of Medical Physiology. 11th ed. Amsterdam: Elsevier Saunders; 2006. 890 p.
2.Freeman RD, Fatt I. Environmental influences on ocular temperature. Invest Ophthalmol. 1973;12(8):596-602.
3.Mayer SA, Sessler VA. Therapeutic Hypothermia. New York: Marcel Dekker; 2005. 402 p.
4.Kiyatkin EA. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature (Austin). 2019;6(4):271-333.
5.Tsariov А. Target temperature management in clinical practice of intensive care for critical states. Emergency Medicine. 2014;7(62):186-191.
6.Avetisov SE, Novikov IA, Lutsevich EE, Reyn ES. Use of infrared thermography in ophthalmology. Vestn Oftalmol. 2017;133(6):99 105.
7.Martin DK, Fatt I. The presence of a contact lens induces a very small increase in the anterior corneal surface temperature. Acta Ophthalmol (Copenh). 1986;64(5):512-518.
8.Kudinov VA, Kartashov EM, Stefanyuk EV. Technical thermodynamics and heat transfer. Textbook for Academic Baccalaureate. Мoscow: Yurait; 2019. 454 p.
9.Savvin VN, Korotkova OL, Shishkin GP. The use of thermodynamic approaches in assessing the state of a living system. Vyatka Medical Bulletin. 2017; 2:40-44.
10.Lucia U. Bioengineering thermodynamics of biological cells. Theor Biol Med Model. 2015;12:29.
11.Grischenko TG, Dekusha LV, Vorobiov LY. Heat flow measuring: theory, metrology, practice. Book 1. Methods and means of heat flow measuring. Kiev: Institute of Engineering Thermophysics of NASU; 2017. 438 p.
12.Mapstone R. Determinants of corneal temperature. Br J Ophthalmol. 1968;52(10):729-41.
13.Purslow C, Wolffsohn J. The relation between physical properties of the anterior eye and ocular surface temperature. Optom Vis Sci. 2007;84(3):197-201.
14.Emery AF, Kramar P, Guy AW, Lin, JC. Microwave induced temperature rises in rabbit eyes in cataract research. J Heat Transfer. 1975;97(1):123-128.
15.Holmberg A. The temperature of the eye during the application of hot packs, and after milk injections. Acta Ophthalmol (Copenh). 1952;30(4):348-364.
16.Zeiss E. Über Wärmestrahlungsmessungen an der lebenden menschlichen Hornhaut. Arch Augenheilkd. 1930;102:523–550.
17.Mapstone R. Measurement of corneal temperature. Exp Eye Res. 1968;7(2):237-43.
18.Purslow C, Wolffsohn JS. Ocular surface temperature: a review. Eye Contact Lens. 2005;31(3):117-123.
19.Buiko AS, Tsyikalo AL, Terenteva LS. Liquid crystal thermography in oncoophthalmology. J Ophthalmol (Ukraine). 1977;2:110-114.
20.Guo S, Wu K, Li C, Wang H, Sun Z, Xi D, Zhang S et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter. 2021;4(3):969-985.
21.Moreddu R, Elsherif M, Butt H, Vigolo D, Yetisen AK. Contact lenses for continuous corneal temperature monitoring. RSC Adv. 2019;9(20):11433-11442.
22.Chang TC, Hsiao YL, Liao SL. Application of digital infrared thermal imaging in determining inflammatory state and follow-up effect of methylprednisolone pulse therapy in patients with Graves’ ophthalmopathy. Graefes Arch Clin Exp Ophthalmol. 2008;246(1):45-9.
23.Kawasaki S, Mizoue S, Yamaguchi M, Shiraishi A, Zheng X, Hayashi Y, et al. Evaluation of filtering bleb function by thermography. Br J Ophthalmol. 2009;93(10):1331-6.
24.Wang C, Jiao H, Anatychuk L, Pasyechnikova N, Naumenko V, Zadorozhnyy O, et al. Development of a Temperature and Heat Flux Measurement System Based on Microcontroller and its Application in Ophthalmology. Measurement Science Review. 2022;22(2):73-79.
25.Anatychuk L, Pasyechnikova N, Zadorozhnyy O, Nazaretian R, Myrnenko V, Kobylyanskyi R et al. Original device and approaches to the study of temperature distribution in various eye segments (experimental study). J Ophthalmol (Ukraine). 2015;6:50-53.
26.Schwartz B, Feller MR. Temperature gradients in the rabbit eye. Invest Ophthalmol. 1962;1:513-21.
27.Nazaretian RE, Zadorozhnyy OS, Umanets NN, Naumenko VA, Pasyechnikova NV, Shafranskii VV. Intraocular temperature changes during vitrectomy procedure. J Ophthalmol (Ukraine). 2018;6:30-4.
28.Iguchi Y, Asami T, Ueno S, Ushida H, Maruko R, Oiwa K, Terasaki H. Changes in vitreous temperature during intravitreal surgery. Invest Ophthalmol. 2014;55(4):2344-9.
29.Mansouri K, Gillmann K, Rao HL, Szurman P, Weinreb RN; ARGOS -2 Study Group. Measurement of intraocular temperature in glaucoma: week-day and seasonal fluctuations. Br J Ophthalmol. 2022;bjophthalmol-2021-320495.
30.Horven I. Corneal temperature in normal subjects and arterial occlusive disease. Acta Ophthalmol (Copenh). 1975;53(6):863-874.
31.Alio` J, Padron M. Influence of age on the temperature of the anterior segment of the eye: measurements by infrared thermometry. Ophthalmic Res. 1982;14:153-159.
32.Martin DK, Fatt I. The presence of a contact lens induces a very small increase in the anterior corneal surface temperature. Acta Ophthalmol (Copenh). 1986;64(5):512-518.
33.Koçak I, Orgül S, Flammer J. Variability in the measurement of corneal temperature using a noncontact infrared thermometer. Ophthalmologica. 1999;213(6):345-349.
34.Morgan PB, Soh MP, Efron N, Tullo AB. Potential Applications of Ocular Thermography. Optom Vis Sci. 1993;70(7):568-76.
35.Craig JP, Singh I, Tomlinson A, Morgan PB, Efron N. The role of tear physiology in ocular surface temperature. Eye (Lond). 2000;14(4):635-641.
36.Tan L, Cai ZQ, Lai NS. Accuracy and sensitivity of the dynamic ocular thermography and inter-subjects ocular surface temperature (OST) in Chinese young adults. Cont Lens Anterior Eye. 2009;32(2):78-83.
37.Kamao T, Yamaguchi M, Kawasaki S, Mizoue S, Shiraishi A, Ohashi Y. Screening for dry eye with newly developed ocular surface thermographer. Am J Ophthalmol. 2011;151(5):782-791.e1.
38.Sodi A, Matteoli S, Giacomelli G, Finocchio L, Corvi A, Menchini U. Ocular surface temperature in age-related macular degeneration. J Ophthalmol. 2014;2014:281010.
39.Abreau K, Callan C, Kottaiyan R, Zhang A, Yoon G, Aquavella JV, Zavislan J, Hindman HB. Temperatures of the ocular surface, lid, and periorbital regions of sjögren's, evaporative, and aqueous-deficient dry eyes relative to normals. Ocul Surf. 2016;14(1):64-73.
40.Anatychuk LI, Pasyechnikova NV, Naumenko VА, Zadorozhnyy OS, Gavrilyuk MV, Kobylianskyi RR. A thermoelectric device for ophthalmic heat flux density measurements: results of piloting in healthy individuals. J Ophthalmol (Ukraine). 2019; 3:45-51.
41.Matteoli S, Vannetti F, Sodi A, Corvi A. Infrared thermographic investigation on the ocular surface temperature of normal subjects. Physiol Meas. 2020;41(4):045003.
42.Chandrasekar B, Rao AP, Murugesan M, Subramanian S, Sharath D, Manoharan U, et al. Ocular surface temperature measurement in diabetic retinopathy. Exp Eye Res. 2021; 211:108749.
43.Mapstone R. Ocular thermography. Br J Ophthalmol. 1970;54(11):751-4.
44.Haber-Olguin A, Polania-Baron EJ, Trujillo-Trujillo F, Graue Hernandez EO. Thermographic behaviour of the cornea during treatment with two excimer laser platforms. Transl Vis Sci Technol. 2021;10(9):27.
45.Purslow C, Wolffsohn JS, Santodomingo-Rubido J. The effect of contact lens wear on dynamic ocular surface temperature. Cont Lens Anterior Eye. 2005;28(1):29-36.
46.Tan JH, Ng EYK, Acharya UR, Chee C. Infrared thermography on ocular surface temperature: A review. Infrared Phys Techn. 2009;52:97-108.
47.Rysä P, Sarvaranta J. Corneal temperature in man and rabbit. Observations made using an infra-red camera and a cold chamber. Acta Ophthalmol (Copenh). 1974;52(6):810-6.
48.Petznick A, Tan JH, Boo SK, Lee SY, Acharya UR, Tong L. Repeatability of a new method for measuring tear evaporation rates. Optom Vis Sci. 2013;90(4):366-371.
49.Shah AM, Galor A. Impact of Ocular Surface Temperature on Tear Characteristics: Current Insights. Clin Optom (Auckl). 2021;13:51-62.
50.Morgan PB, Tullo A, Efron N. Infrared thermography of the tear film in dry eye. Eye (Lond). 1995;9:615-618.
51.Tan LL, Sanjay S, Morgan PB. Screening for dry eye disease using infrared ocular thermography. Cont Lens Anterior Eye. 2016;39(6):442-449.
52.Matteoli S, Favuzza E, Mazzantini L, Aragona P, Cappelli S, Corvi A, et al. Ocular surface temperature in patients with evaporative and aqueous-deficient dry eyes: a thermographic approach. Physiol Meas. 2017;38(8):1503-1512.
53.García-Porta N, Gantes-Nuñez FJ, Tabernero J, Pardhan S. Characterization of the ocular surface temperature dynamics in glaucoma subjects using long-wave infrared thermal imaging. J Opt Soc Am A Opt Image Sci Vis. 2019;36(6):1015-1021.
54.Giannetto C, Di Pietro S, Falcone A, Pennisi M, Giudice E, Piccione G, Acri G. Thermographic ocular temperature correlated with rectal temperature in cats. J Therm Biol. 2021;102:103104.
55.Dorokhova O, Zborovska O, Meng G, Zadorozhnyy O. Temperature of the ocular surface in the projection of the ciliary body in rabbits. J Ophthalmol (Ukraine). 2020;2(493):65-69.
56.Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature. 2020;7(4):321-362.
57.Baker FC, Waner JI, Vieira EF, Taylor SR, Driver HS, Mitchell D. Sleep and 24 hour body temperatures: a comparison in young men, naturally cycling women and women taking hormonal contraceptives. J Physiol. 2001;530(3):565-574.
58.Morgan PB, Soh MP, Efron N. Corneal surface temperature decreases with age. Cont Lens Anterior Eye. 1999;22(1):11-13.
59.Spaide RF. Age-related choroidal atrophy. Am J Ophthalmol. 2009;147(5):801-10.
60.Anatychuk L, Pasyechnikova N, Naumenko V, Kobylianskyi R, Zadorozhnyy O. Temperature and heat flux density of the eye surface in healthy individuals with different subfoveal thickness of the choroid. Acta Ophthalmol. 2022;100: S267.
61.Sigler EJ, Randolph JC. Comparison of macular choroidal thickness among patients older than age 65 with early atrophic age-related macular degeneration and normals. Invest Ophthalmol. 2013;54(9):6307-13.
62.Anatychuk LI, Pasyechnikova NV, Naumenko VА, Zadorozhnyy OS, Hramenko NI, Kobylianskyi RR. Temperature of and heat flux density from the external ocular surface in diabetic retinopathy patients: a pilot study. J Ophthalmol (Ukraine). 2019;6:3-6.
63.Sudhalkar A, Chhablani JK, Venkata A, Raman R, Rao PS, Jonnadula GB. Choroidal thickness in diabetic patients of Indian ethnicity. Indian J Ophthalmol. 2015;63(12):912-6.
64.Gugleta K, Orgül S, Flammer J. Is corneal temperature correlated with blood-flow velocity in the ophthalmic artery? Curr Eye Res. 1999;19(6):496-501.
65.Galassi F, Giambene B, Corvi A, Falaschi G. Evaluation of ocular surface temperature and retrobulbar haemodynamics by infrared thermography and colour Doppler imaging in patients with glaucoma. Br. J. Ophthalmol. 2007;91:878–881.
66.Morgan PB, Smyth JV, Tullo AB, Efron N. Ocular temperature in carotid artery stenosis. Optom Vis Sci. 1999; 76(12): 850-4.
67.Sodi A, Giambene B, Falaschi G, Caputo R, Innocenti B, Corvi A, Menchini U. Ocular surface temperature in central retinal vein occlusion: preliminary data. Eur J Ophthalmol. 2007; 17(5): 755-9.
68.Blomqvist A, Engblom D. Neural mechanisms of inflammation-induced fever. Neuroscientist. 2018;24(4):381-399.
69.Efron N, Brennan NA, Hore J, Rieper K. Temperature of the hyperemic bulbar conjunctiva. Curr Eye Res. 1988; 7(6): 615-618.
70.Klamann MK, Maier AK, Gonnermann J, Klein JP, Bertelmann E, Pleyer U. Ocular surface temperature gradient is increased in eyes with bacterial corneal ulcers. Ophthalmic Res. 2013; 49(1): 52-6.
71.Mapstone R. Corneal thermal patterns in anterior uveitis. Br J Ophthalmol. 1968;52(12):917-921.
72.Kawali AA. Thermography in ocular inflammation. Indian J Radiol Imaging. 2013;23(3):281-3.
73.Leshno A, Stern O, Barkana Y, Kapelushnik N, Singer R, Prat DL, et al. Ocular surface temperature differences in glaucoma. Eur J Ophthalmol. 2022;32(3):1518-1524.
74.Zadorozhnyy OS, Guzun OV, Bratishko AIu, Kustrin TB, Nasinnik IO, Korol AR. Infrared thermography of external ocular surface in patients with absolute glaucoma in transscleral cyclophotocoagulation: a pilot study. J Ophthalmol (Ukraine). 2018;2:23-28.
75.Zadorozhnyy OS, Guzun OV, Kustrin TB, Korol AR, Naumenko VA, Pasyechnikova NV. Ocular heat exchange indices in terminal neovascular glaucoma patients with proliferative diabetic retinopathy. J Ophthalmol (Ukraine). 2020;1:10-13.
76.Auker CR, Parver LM, Doyle T, Carpenter DO. Choroidal blood flow. I. Ocular tissue temperature as a measure of flow. Arch Ophthalmol. 1982;100(8):1323-6.
77.Konieczka K, Koch S, Hauenstein D, Chackathayil TN, Binggeli T, Schoetzau A, Flammer J. Effects of the Glaucoma Drugs Latanoprost and Brimonidine on Corneal Temperature. Transl Vis Sci Technol. 2019;8(3):47.
78.Merté HJ, Schubert E. Thermographische Untersuchungen. Albrecht von Graefes Arch Klin Ophthalmol. 1971;183:47-52.
79.Galassi F, Giambene B, Corvi A, Falaschi G, Menchini U. Retrobulbar hemodynamics and corneal surface temperature in glaucoma surgery. Int Ophthalmol. 2008;28(6):399-405.
80.Fujishima H, Toda I, Yagi Y, Tsubota K. Quantitative evaluation of postsurgical inflammation by infrared radiation thermometer and laser flare-cell meter. J Cataract Refract Surg. 1994;20(4):451-4.
81.Anatychuk L, Pasyechnikova N, Naumenko V, Kobylianskyi R, Nazaretyan R, Zadorozhnyy O. Prospects of Temperature Management in Vitreoretinal Surgery. Ther Hypothermia Temp Manag. 2021;11(2):117-121..
82.Zadorozhnyy OS, Savin NV, Buiko AS. Improving the technique for controlled cryogenic destruction of conjunctival tumors located in the projection of the ciliary body onto the sclera: A preliminary report. J Ophthalmol (Ukraine). 2018; 5:60-65.
83.Betney S, Morgan PB, Doyle SJ, Efron N. Corneal temperature changes during photorefractive keratectomy. Cornea. 1997; 16(2):158-61.
84.Maldonado-Codina C, Morgan PB, Efron N. Thermal consequences of photorefractive keratectomy. Cornea. 2001; 20(5): 509-515.
85.Haber-Olguin A, Polania-Baron EJ, Trujillo-Trujillo F, Graue Hernandez EO. Thermographic Behavior of the Cornea During Treatment With Two Excimer Laser Platforms. Transl Vis Sci Technol. 2021;10(9):27.
86.Sniegowski MC, Erlanger M, Olson J. Thermal imaging of corneal transplant rejection. Int Ophthalmol. 2018;38(6):2335-2339.
87.May DR, Freedland RJ, Charles S, Wang C, Bakos J. Ocular hypothermia: anterior chamber perfusion. Br J Ophthalmol. 1983;67(12):808-13.
88.Schwartz B. Environmental temperature and the ocular temperature gradient. Arch Ophthalmol. 1965;74:237-43.
89.Anatychuk L, Pasyechnikova N, Zadorozhnyy O, Kobylianskyi R, Nazaretyan R, Myrnenko V. Experimental study of intraocular temperature distribution in the rabbit under various environmental conditions. Acta Ophthalmol. 2016; 94: S256.
90.Horiguchi M, Miyake Y. Effect of temperature on electroretinograph readings during closed vitrectomy in humans. Arch Ophthalmol. 1991;109(8):1127-1129.
91.Landers MB 3rd, Watson JS, Ulrich JN, Quiroz-Mercado H. Determination of retinal and vitreous temperature in vitrectomy. Retina. 2012;32(1):172-6.
92.Romano MR, Vallejo-Garcia JL, Romano V, Angi M, Vinciguerra P, Costagliola C. Thermodynamics of vitreoretinal surgery. Curr Eye Res. 2013;38(3):371-4.
93.Shinoda K, Matsumoto SC, Yagura K, Terauchi G, Shoji T, Yoshikawa Y, Igawa Y, Mizota A, Miyake Y. Intraocular Temperature Distribution in Eyes Undergoing Different Types of Surgical Procedures during Vitreous Surgery. J Clin Med. 2022;11(7):2053.
94.Scott JA. A finite element model of heat transport in the human eye. Phys Med Biol. 1988;33(2):227-41.
95.Buck B, Lopezcarasa G, Kon Jara VA, Mwanza J, Landers M. Retinal and intravitreal temperature during vitreous surgery. Invest Ophthalmol. 2014;55(13):1932.
96.Taflove A, Brodwin ME. Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye. IEEE Transactions on Microwave Theory and Techniques. 1975;23(11):888-896,
97.Neelakantaswamy PS, Ramakrishnan KP, Microwave-induced hazardous nonlinear thermoelastic vibrations of the ocular lens in the human eye. Journal of Biomechanics. 1979;12(3):205-210.
98.Lagendijk JJ. A mathematical model to calculate temperature distributions in human and rabbit eyes during hyperthermic treatment. Phys Med Biol. 1982;27(11):1301-11.
99.Flyckt VM, Raaymakers BW, Lagendijk JJ. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels. Phys Med Biol. 2006;51(19):5007-5021.
100.Ng EY, Ooi EH. FEM simulation of the eye structure with bio-heat analysis. Comput Methods Programs Biomed. 2006;82(3):268-76.
101.Ng EY, Ooi EH, Archarya UR. A comparative study between the two-dimensional and three-dimensional human eye models. Math. Comput Model. 2008;48:712–720.
102.Ooi EH, Ng EY. Simulation of aqueous humor hydrodynamics in human eye heat transfer. Comput Biol Med. 2008;38(2):252-62.
103.Rafiq A, Khanday MA. Thermal behavior of human eye in relation with change in blood perfusion, porosity, evaporation and ambient temperature. J Therm Biol. 2016;62:138-142.
104.Gokul KC, Gurung DB, Adhikary PR. Thermal effects of eyelid in human eye temperature model. Journal of Applied Mathematics & Informatics. 2014;32(5-6):649-663.
105.Narasimhan A, Jha KK. Bio-heat transfer simulation of retinal laser irradiation. Int J Numer Method Biomed Eng. 2012;28(5):547-59.
106.Truong LTD, Lesniewski PJ, Wedding AB. Heat transfer simulation in laser irradiated retinal tissues. Biomed Phys Eng Express. 2021;8(1).
107.Ooi EH, Ang WT, Ng EY. A boundary element model of the human eye undergoing laser thermokeratoplasty. Computers in Biology and Medicine. 2008;38(6):727-737.
108.Regal S, Troughton J, Delattre R, Djenizian T, Ramuz M. Changes in temperature inside an optomechanical model of the human eye during emulated transscleral cyclophotocoagulation. Biomed Opt Express. 2020; 11(8): 4548-4559.
109.Gongal D, Thakur S, Panse A, Pawar R, Yu CQ, Foster CD. Thermal analysis of intraocular electronic display projector visual prosthesis. Numeri Heat Transf A Appl. 2020;78(12):706-716.
110.Opie NL, Burkitt AN, Meffin H, Grayden DB. Heating of the eye by a retinal prosthesis: modeling, cadaver and in vivo study. IEEE Trans Biomed Eng. 2012;59(2):339-45.
Відомості про авторів та розкриття інформації
Внесок авторів. Концепція та дизайн дослідження: Пасєчнікова Н.В.; збір літературних даних та аналіз: Задорожний О.С. Король А.Р., Науменко В.О., Бутенко Л.Л.; підготовка рукопису: Задорожний О.С. Усі автори вивчили та схвалили кінцеву версію рукопису.
Джерела підтримки. Дослідження виконано в рамках науково-дослідної роботи ДУ «Інститут очних хвороб та тканинної терапії ім. В.П. Філатова НАМН України» (№ держреєстрації 0117U004356).
Декларація про конфлікт інтересів. Автори засвідчують про відсутність конфліктів інтересів, які б могли вплинути на її думку стосовно предмету чи матеріалів, наданих в даному рукопису.
Абревіатури. ІЧ – інфрачервоний; ТП – тепловий потік; ТПО – температура поверхні ока; ДР – діабетична ретинопатія; ВОТ – внутрішньоочний тиск.
Надійшла 23.10. 2022