Офтальмол. журн. — 2014. — № 3. — С. 53-57.

https://doi.org/10.31288/oftalmolzh201435357

Anti-infective peptide LL37 sustained delivery system — a potential novel treatment method of ocular infections. Report 2. Antiviral properties of silica nanoparticle encapsulated LL37

M. M. Islam 1, M. Griffith 1, O. Buznyk 2

1Linkoping University, Linkoping (Sweden)

2The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine, Odessa (Ukraine)

Purpose. To test anti-viral activity of anti-infective peptide (AIP) LL37 sustained release system (SRS) based on silica nanoparticles.

Material and Methods. AIP LL37 (cathelicidin) was encapsulated in silica nanoparticles (SiNP) under magnetic stirring. For antiviral activity testing, human corneal epithelial cell (HCEC) culture was infected by type I herpes simplex virus (HSV). SiNP encapsulated LL37 or empty SiNP or free LL37 were added to the infected HCEC after that and were co-cultured for additional 24—72 h. Culture medium was collected to count virus titer using plaque formation assay.

Results. SiNP encapsulated LL37 had significant antiviral effect against HSV compared to control: virus titer in culture medium contained SiNP encapsulat¬ed LL37 was 91,2+49,7plaque forming units (PFU) per ml. in 24 h culturing and 44333,3+8891,9 PFU/ml in 72 h culturing. At the same time, virus titer in culture medium without SRS of AIP LL37 was 6716,7+3489,6 PFU/ml and 327500+36159,4PFU/ml in 24 h and 72 h culturing respectively (P = 0,024).

Conclusion. For the first time it was shown in vitro activity of anti-infective peptide LL37sustained release system based on silica nanoparticles against the common-drug delivery, est ocular viral infection — herpes simplex virus.

Key words: eye infection, LL37, Antagonists peptide system 0f constant delivery, herpes simplex virus.        

 

References

1.Buznik OI. Anti-infective peptide LL37 sustained delivery system — a potential novel treatment method of ocular infections. Report 2. Oftalmol Zh. 2014. In printing. Ukrai¬nian.

2.Gaidamaka TB. Recurrent herpetic keratitis. Pathogenesis, diagnosis, treatment, prevention: Author's thesis for Doctor of Med. Sciences: 14.01.18 Ophthalmology. SI «The Filatove Institute of Eye Diseases and Tissue Therapy». Odessa, 2011. 44 p.

3.Araki-Sasaki K, Ohashi Y, Sasabe T, et al. An SV40- immortalized human corneal epithelial cell line and its  characterization.   Invest.   Ophthalmol.  Vis. Sci. 1995;36:614-21.

4.Barlow PG, Svoboda P, Mackellar A et al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. ONE. 2011;6(10):e25333.
Crossref

5.Brogden K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Rev. Microbiol. 2005;3:238-50.
Crossref

6.Chetoni P, Rossi S, Burgalassi S et al. Comparison of liposome-encapsulated acyclovir with acyclovir ointment: ocular pharmacokinetics in rabbits. J. Ocul. Pharmacol. Ther. 2004;20(2):169-77.
Crossref

7.Donadio S, Maffioli S, Monciardini P, Sosio M, Jabes D. Antibiotic discovery in the twenty-first century: Current trends and future perspectives. J. Antibiot. (To¬kyo). 2010;63(8):423-30.
Crossref

8.Ejercito PM, Kieff ED, Roizman B. Characterization of her¬pes simplex virus strains differing in their effects on social behaviour of infected cells. J. Gen. Virol. 1968;2:357- 64.
Crossref

9.Farooq A, Shah A, Shukla D. The role of herpes viruses in ocular infections. Virus Adaptation and Treatment. 2010;2:115-23.
Crossref

10.Fresta M, Fontana G, Bucolo C et al. Ocular tolerability and in vivo bioavailability of poly(ethyleneglycol) (PEG)-coated polyethyl-2-cyanoacrylate nanosphere-encapsulat-ed acyclovir. J. Pharm. Sci. 2001;90(3):288- 97.

11.Gordon YJ, Huang LC, Romanowski EG et al. Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr. Eye Res. 2005;30(5):385- 94.

12.Griffith M, Polisetti N, Kuffova L et al. Regenerative approaches as alternatives to donor allografting for restoration of corneal function. Ocul. Surf. 2012;10(3):170- 83.
Crossref

13.Izquierdo-Barba I, Vallet-Regн M, Kupferschmidt N et al. Incorporation of antimicrobial compounds in mesoporous silica film monolith. Biomaterials. 2009;30(29):5729- 36.

14.Ramos R, Domingues L, Gama M. LL37, a human antimicrobial peptide with immunomodulatory properties.Science against microbial pathogens: communicating cur¬rent research and technological advances : Microbiology Book Series [edit. A. Mnndez-Vilas]. Badajoz: Formatex Research Center, 2011;2:915-25.

15.Robinson JR. Ocular drug delivery: mechanisms of corneal drug transport & mucoadhesive delivery systems.S. T. P. Pharma. 1989;12:839-46.

16.Saettone MF, Giannaccini B, Guiducci A et al. Polymer effects on ocular bioavailability, II: the influence ofbenzalko-nium chloride on the mydriatic response of tropicamide in different polymeric vehicles. Int. J. Pharm. 1985;25:73- 84.

17.Shell JW. Ocular drug delivery systems — a review. Cutaneous and Ocular Toxicol. 1982;1:49- 63.

18.Zarbin MA, Montemagno C, Leary JF, Ritch R. Nano-technology in ophthalmology.  Can.  J. Ophthalmol. 2010;45:457-76.
Crossref