J.ophthalmol.(Ukraine).2020;6:61-63.

 

http://doi.org/10.31288/oftalmolzh202066163

Received: 14 August 2020; Published on-line: 21 December 2020


A case of radiation cataract found 29 years after radiation exposure

N. V. Pasyechnikova1, P. A. Fedirko2, T. F. Babenko2

1 Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine; Odesa (Ukraine)

2 Health Physics and Epidemiology Institute, National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine; Kyiv (Ukraine)

E-mail: eye-rad@ukr.net

TO CITE THIS ARTICLE: Pasyechnikova NV, Fedirko PA, Babenko TF. A case of radiation cataract found 29 years after radiation exposure. J.ophthalmol.(Ukraine).2020;6:61-3.   http://doi.org/10.31288/oftalmolzh202066163


Background: Radiation cataracts are an acknowledged biological effect of radiation exposure. It has been demonstrated previously that, the mode value for the latent period for the identified post-Chornobyl cases of radiation cataract was 9 years. We present a case of radiation cataract with typical clinical features that manifested 29 years after radiation exposure.

Material and Methods: A female patient, born in 1937, worked in the exclusion zone of the Chornobyl Nuclear Power Plant in early May of 1986; she is now under our regular supervision. Because over years, the patient had had the annual routine eye examination (including, but not limited to biomicroscopy, lens examination and red reflex photography using a fundus camera), the time of onset of specific lens opacity could be placed within a period of several months.

Results: On examination performed on December 15, 2014, the right lens showed mild peripheral cortical opacity without signs of radiation cataract, and with vacuoli seen in the anterior subcapsular lens region. On examination performed on August 8, 2015, the right eye showed a mild, specific, posterior, central subcapsular opacification.

Conclusion: We presented a case of radiation cataract, documented by fundus camera photography, with typical clinical features that manifested 29 years after radiation exposure. Detecting a radiation cataract so late after radiation exposure indicates that the changes in the eye exposed to radiation can be very durable.

Keywords: cataract, radiation cataract, ionizing radiation, Chornobyl acciddent, latent period

References

1.Pasechnikova NV, Fedirko PA. Radiation cataract: new data received after Chornobyl accident. In: Proceedings of the International conference “Health effects of the Chornobyl accident – 30 years aftermath”. April 18-19, 2016. Kyiv, 2016. p.113.

2.Worgul BV, Medvedovsky C, Wu B. Use of non-subjective analysis of lens transparency in experimental radiation cataract research. Ophthalmic Res. 1995;27 Suppl 1:110-5.  

Crossref   PubMed

3.Fedirko PA. [Radiation cataract as a late effect of the Chornobyl disaster]. Visnyk naukovykh doslidzhen. 2002;2:46-8. Ukrainian.

4.Fedirko PA, Babenko TF, Kolosynska OO, et al. Clinical types of cataracts in a long-term period after acute radiation sickness. Probl Radiac Med Radiobiol. 2019 Dec;24:493-502. 

Crossref   PubMed

5.Zhou DD, Yao L, Guo KM, Lu CW. Cytogenetic evaluation of cataract patients occupationally exposed to ionizing radiation in northeast China. Genet Mol Res. 2016 Sep 16;15(3). 

Crossref   

6.Korol AR, Zadorozhnyy OS, Naumenko VO, Kustryn TB, Pasyechnikova N.V. Intravitreal aflibercept for the treatment of choroidal neovascularization associated with pathologic myopia: A pilot study. Clin Ophthalmol. 2016 Nov 4;10:2223-2229.  

Crossref   PubMed

7.Korol A, Kustryn T, Zadorozhnyy O, Pasyechnikova N., Kozak I.  Comparison of efficacy of intravitreal ranibizumab and aflibercept in eyes with myopic choroidal neovascularization: 24-month follow-up. J Ocul Pharmacol Ther. 2020 Mar;36(2):122-125. 

Crossref   PubMed 

8.Babenko TF, Fedirko PA, Dorichevska RY, Denysenko NV, Samoteikina LA, Tyshchenko OP. The risk of macular degeneration development in persons antenatally irradiated as a result of Chornobyl NPP accident. Probl Radiac Med Radiobiol. 2016 Dec;21:172-7.

Crossref   

9.Yao X, Zhai M, Zhou L, Yang L. Protective effects of SND1 in retinal photoreceptor cell damage induced by ionizing radiation. Biochem Biophys Res Commun. 2019 Jun 30;514(3):919-925. 

Crossref   PubMed

10.Mao XW, Boerma M, Rodriguez D, et al. Acute Effect of Low-Dose Space Radiation on Mouse Retina and Retinal Endothelial Cells. Radiat Res. 2018 Jul;190(1):45-52.  

Crossref   PubMed 

11.Vasylenko VV, Nechaev SY, Tsigankov MYa, et al. Results of comprehensive radiological - hygienic monitoring in some settlements of radiologically contaminated areas in Rivne region in 2017. Probl Radiac Med Radiobiol. 2018 Dec;23:139-152.

Crossref   PubMed

12.Vasylenko VV, Tsigankov MYa, Nechaev SYa, et al. Peculiarities of internal radiation doses due to 137Cs and 90Sr intake in population from Zhytomyr oblast in a late period after the Chornobyl NPP accident et al. Probl Radiac Med Radiobiol. 2013;(18):59-69.

13.Prylypko VA, Morozova MM, Petrychenko OO, Ozerova YY, Kotsubinskij OV. Morbidity rates in the NPP surveillance zone and radiologically contaminated areas. Probl Radiac Med Radiobiol. 2018 Dec;23:188-199. 

Crossref   PubMed

14.Gunko NV, Korotkova NV. Variability of population gender and age composition in areas with the most intensive radiological contamination in Ukraine. Probl Radiac Med Radiobiol. 2018 Dec;23:153-163.  

Crossref   PubMed

The authors certify that they have no conflicts of interest in the subject matter or materials discussed in this manuscript.