J.ophthalmol.(Ukraine).2021;1:70-75.
http://doi.org/10.31288/oftalmolzh202117075
Received: 10 July 2020; Published on-line: 12 February 2021
Results and possible prospects of genetic technology in ophthalmology (literature review). Part I
N. A. Gavrilova, O. Ie. Tishchenko, A. V. Zinov’eva
A.I. Yevdokimov Moscow State University of Medicine and Dentistry;
Moscow (Russian Federation)
E-mail: aleksandra.r@live.ru
TO CITE THIS ARTICLE: Gavrilova NA, Tishchenko OIe, Zinov’eva AV. Results and possible prospects of genetic technology in ophthalmology (literature review). Part I. J.ophthalmol.(Ukraine).2021;1:70-75. http://doi.org/10.31288/oftalmolzh202117075
The emergence of fundamentally novel technological solutions in the field of gene therapy today, the formation of the priority and the development of genetic technologies create serious prerequisites for the beginning of a new Fusion era in ophthalmology in the near future. This review, in its first part, presents the results of fundamental and clinical studies on the use of viral and non-viral systems for the delivery of genetic material in ophthalmology. The second part of the review will focus on genetic therapeutic strategies (gene replacement, gene suppression, genomic editing using CRISPR / Cas9 technology, priming and transposon editing) that have been used in ophthalmology over the past several years.
Keywords: viral vectors, gene therapy, retina
References
1.Order of the Ministry of Health of Russia dated March 30, 2013 No. 175 "On approval of the action plan for the implementation of the Strategy for the development of medical science in the Russian Federation for the period up to 2025, approved by the order of the Government of the Russian Federation No. 2580-r dated December 28, 2012" (as amended by dated June 26, 2015 No. 373). Collection of legislation of the Russian Federation. 2013;2:111. Russian.
2.Resolution of the Government of the Russian Federation dated April 22, 2019 No. 479 "On approval of the Federal Scientific and Technical Program for the Development of Genetic Technologies for 2019 - 2027". Collection of legislation of the Russian Federation. 2019;7:2108. Russian.
3.Rotov AYu, Nikolaeva DA., Astakhova LA., Firsov M.L. [Viral vectors for optogenetic retinal prosthetics]. Russian physiological journal I.M.Sechenova. 2018; 104 (12): 1391-408. Russian.
4.Supotnitskiy MV. [Genotherapeutic vector systems based on viruses]. Biopreparats (Biopharmaceuticals). 2011;3:15-26. Russian.
5.Alves C.H., Wijnholds J. AAV Gene Augmentation Therapy for CRB1-Associated Retinitis Pigmentosa. Methods Mol Biol. 2018;1715:135‐151.
6.Bosco A, Anderson SR, Breen KT, Romero CO, Steele MR, Chiodo VA, Boye SL, Hauswirth WW, Tomlinson S, Vetter ML. Complement C3-Targeted Gene Therapy Restricts Onset and Progression of Neurodegeneration in Chronic Mouse Glaucoma. Mol Ther. 2018;26(10):2379‐2396.
7.Chekuri A, Sahu B, Chavali VRM, Voronchikhina M, Soto-Hermida A, Suk JJ, Alapati AN, Bartsch D-U, Ayala-Ramirez R, Zenteno JC, Dinculescu A, Jablonski MM, Borooah S, Ayyagari R. Human Gene Therapy. 2019;632-650.
8.Dyka FM, Molday LL, Chiodo VA, Molday RS, Hauswirth WW. Dual ABCA4-AAV Vector Treatment Reduces Pathogenic Retinal A2E Accumulation in a Mouse Model of Autosomal Recessive Stargardt Disease. Hum Gene Ther. 2019;30(11):1361‐70.
9.Feathers KL, Jia L, Perera ND, Chen A, Presswalla FK, Khan NW, Fahim AT, Smith AJ, Ali RR, Thompson DA. Development of a Gene Therapy Vector for RDH12-Associated Retinal Dystrophy. Hum Gene Ther. 2019;30(11):1325‐35.
10.Gamlin PD, Alexander JJ, Boye SL, Witherspoon CD, Boye SE. SubILM Injection of AAV for Gene Delivery to the Retina. Methods Mol Biol. 2019;1950:249‐62.
11.Kalesnykas G, Kokki E, Alasaarela L, Lesch HP, Tuulos T, Kinnunen K, Uusitalo H, Airenne K, Yla-Herttuala S. Comparative Study of Adeno-associated Virus, Adenovirus, Bacu lovirus and Lentivirus Vectors for Gene Therapy of the Eyes. Curr Gene Ther. 2017;17(3):235‐247.
12.Lipinski D.M. A Comparison of Inducible Gene Expression Platforms: Implications for Recombinant Adeno-Associated Virus (rAAV) Vector-Mediated Ocular Gene Therapy. Adv Exp Med Biol. 2019;1185:79-83.
13.Moore NA, Bracha P, Hussain RM, Morral N, Ciulla TM. Gene therapy for age-related macular degeneration. Expert Opinion on Biological Therapy. 2017;10:1235-1244.
14.Patrício MI, Barnard AR, Xue K, MacLaren RE. Choroideremia: molecular mechanisms and development of AAV gene therapy. Expert Opin Biol Ther. 2018;18(7):807‐820.
15.Ramachandran PS, Lee V, Wei Z, Song JY, Casal G, Cronin T, et al. Evaluation of Dose and Safety of AAV7m8 and AAV8BP2 in the Non-Human Primate Retina. Hum Gene Ther. 2017;28(2):154‐67.
16.Simpson EM, Korecki AJ, Fornes O, McGill TJ, Cueva-Vargas JL, Agostinone J, et al. New MiniPromoter Ple345 (NEFL) Drives Strong and Specific Expression in Retinal Ganglion Cells of Mouse and Primate Retina. Hum Gene Ther. 2019;30(3):257‐72.
17.Sun P, Liu Z. Overexpressing kringle 1 domain of hepatocyte growth factor with adeno-associated virus inhibits the pathological retinal neovascularization in an oxygen-induced retinopathy mouse model. Biochem Biophys Res Commun. 2019;508(1):130‐137.
18.Wang SK, Xue Y, Rana P, Hong CM., Cepko CL. Soluble CX3CL1 gene therapy improves cone survival and function in mouse models of retinitis pigmentosa. Proc Natl Acad Sci USA. 2019;116(20):10140‐10149.
19.Xue K, MacLaren RE. Ocular gene therapy for choroideremia: clinical trials and future perspectives. Expert Rev Ophthalmol. 2018;13(3):129‐138.
20.Boye SE, Alexander JJ, Witherspoon CD, Boye SL, Peterson JJ, Clark ME, Sandefer KJ, Girkin CA, Hauswirth WW, Gamlin PD. Highly efficient delivery of adeno-associated viral vectors to the primate retina. Hum Gene Ther. 2016;27:580597.
21.Simpson CP, Bolch SN, Zhu P, Weidert F, Dinculescu A, Lobanova ES. Systemic Delivery of Genes to Retina Using Adeno-Associated Viruses. Adv Exp Med Biol. 2019;1185:109‐12.
22.Lee SH, Yang JY, Madrakhimov S, Park HY, Park K, Park TK. Adeno-Associated Viral Vector 2 and 9 Transduction Is Enhanced in Streptozotocin-Induced Diabetic Mouse Retina. Mol Ther Methods Clin Dev. 2018;13:55-66.
23.Wang L, Xiao R, Andres-Mateos E, Vandenberghe LH. Single stranded adeno-associated virus achieves efficient gene transfer to anterior segment in the mouse eye. PLoS One. 2017;12(8):e0182473.
24.Lee SH, Kong YJ, Lyu J, Lee H. Park K, Park TK. Laser Photocoagulation Induces Transduction of Retinal Pigment Epithelial Cells by Intravitreally Administered Adeno-Associated Viral Vectors. Hum Gene Ther Methods. 2015;26(5):159‐61.
25.Aktas Z, Rao H, Slauson SR, Gabelt BA, Larsen IV, Sheridan RTC, Herrnberger L, Tamm ER, Kaufman PL, Brandt CR. Proteasome Inhibition Increases the Efficiency of Lentiviral Vector-Mediated Transduction of Trabecular Meshwork. Invest Ophthalmol Vis Sci. 2018;59(1):298‐310.
26.Basche M, Kampik D, Kawasaki S, Branch MJ, Robinson M, Larkin DF, Smith AJ, Ali RR. Sustained and Widespread Gene Delivery to the Corneal Epithelium via In Situ Transduction of Limbal Epithelial Stem Cells, Using Lentiviral and Adeno-Associated Viral Vectors. Hum Gene Ther. 2018;29(10):1140‐1152.
27.Campochiaro PA, Lauer AK, Sohn EH, Mir TA, Naylor S, Anderton MC, Kelleher M, Harrop R, Ellis S, Mitrophanous KA. Lentiviral Vector Gene Transfer of Endostatin/Angiostatin for Macular Degeneration (GEM) Study. Hum Gene Ther. 2017;28(1):99-111.
28.Liu S, Song W, Liu F, Zhang J, Zhu S. Antitumor efficacy of VP22-CD/5-FC suicide gene system mediated by lentivirus in a murine uveal melanoma model. Exp Eye Res. 2018;172:144-51.
29.Wert KJ, Mahajan VB. In Vivo Expression of Mutant Calpains in the Eye Using Lentivirus. Methods Mol Biol. 2019;1915:233-247.
30.Bai L., Liang W., Chen M., Cissé Y., Liu J., Su Y., Yu J., Liu Q. Effect of Lentivirus-Mediated Gene Silencing, Targeting Toll-Like Receptor 2, on Corneal Allograft Transplantation in Rats. Mol Immunol. 2017;91:97-104.
31.Russell S, Bennett J, Wellman JA, Chung DC , Yu Z-F, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849‐60.
32.Maguire AM, Russell S, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy, safety, and durability of voretigeneneparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy: results of phase 1 and 3 trials. Ophthalmology. 2019;26:1273–1285
33.Campochiaro PA, Nguyen QD, Shah SM, Klein ML, Holz E, Frank RN, et al. Adenoviral vectordelivered pigment epithelium-derived factor for neovascular agerelated macular degeneration: results of a phase I clinical trial. Hum Gene Ther. 2006;17(2):167–76.
34.Constable IJ, Lai CM, Magno AL, French MA, Barone SB, Schwartz SD, Blumenkranz MS, Degli-Esposti MA, Rakoczy EP. Gene Therapy in Neovascular Age-related Macular Degeneration: Three-Year Follow-up of a Phase 1 Randomized Dose Escalation Trial. Am J Ophthalmol. 2017;177:150-158.
35.Rakoczy EP, Magno AL, Lai CM, Pierce CM, Degli-Esposti MA, Blumenkranz MS, Constable IJ. Three-Year Follow-Up of Phase 1 and 2a rAAV.sFLT-1 Subretinal Gene Therapy Trials for Exudative Age-Related Macular Degeneration. Am J Ophthalmol. 2019;204:113-123.
36.Cashman SM, Ramo K, Kumar-Singh R. A non membrane-targeted human soluble CD59 attenuates choroidal neovascularization in a model of age related macular degeneration. PLoS One. 2011;6(4):e19078.
37.Dugel P.U. Clinical trial download: Data on a Gene Therapy for Dry and Wet AMD. A phase 1 clinical trial program is targeting both disease states. Retinal Physician. 2020;17:16-7.
38.Dezawa M, Takano M, Negishi H, Mo X, Oshitari T, Sawada H. Gene transfer into retinal ganglion cells by in vivo electroporation: a new approach. Micron. 2002;33(1):1‐6.
39.Matsuda T, Cepko CL. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA. 2004;101(1):16‐22.
40.Cai X, Yodoi J, Seal S, et al. Nanoceria and thioredoxin regulate a common antioxidative gene network in tubby mice. Adv Exp Med Biol. 2014;801:829–836.
41.Cai X, McGinnis JF. Nanoceria: a Potential Therapeutic for Dry AMD. Adv Exp Med Biol. 2016;854:111–118.
42.Cai X, Seal S, McGinnis JF. Sustained inhibition of neovascularization in vldlr−/− mice following intravitreal injection of cerium oxide nanoparticles and the role of the ASK1-P38/JNK-NF-kappaB pathway. Biomaterials. 2014;35:249–258.
43.Nita M, Grzybowski A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid Med Cell Longev. 2016:3164734.
44.Wong LL, McGinnis JF. Nanoceria as bona fide catalytic antioxidants in medicine: what we know and what we want to know. Adv Exp Med Biol. 2014;801:821–8.
45.Han Z, Banworth MJ, Makkia R, Conley SM, Al-Ubaidi MR, Cooper M.J., Naash MI. Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype. FASEB J. 2015;29:2535–2544.
46.Mitra RN, Nichols CA, Guo J, Makkia R, Cooper MJ, Naash MI, Hana Z. Nanoparticle-mediated miR200-b delivery for the treatment of diabetic retinopathy. J Control Release. 2016;236:31–37.
47.Gao Y, Liu X, Li C, Peng Y, Yang J, Wang X, Li X. Targeting VEGF siRNA Transfection by New Polymeric Liposomes to Inhibit Retinal Neovascularization. Zhonghua Yan Ke Za Zhi. 2015;51(5):344‐350.
48.Wang Y, Rajala A, Cao B, Ranjo-Bishop M, Agbaga M-P, Mao C, Rajala R.V.S. Cell-Specific Promoters Enable Lipid-Based Nanoparticles to Deliver Genes to Specific Cells of the Retina In Vivo. Theranostics. 2016;6:1514–27.
49.Batabyal S, Gajjeraman S, Tchedre K, Dibas A, Wright W, Mohanty S. Near-Infrared Laser-Based Spatially Targeted Nano-enhanced Optical Delivery of Therapeutic Genes to Degenerated Retina. Mol Ther Methods Clin Dev. 2020;17:758–70.
The authors declare no conflict of interest which could influence their opinions on the subject or the materials presented in the manuscript