J.ophthalmol.(Ukraine).2020;2:65-69.

http://doi.org/10.31288/oftalmolzh202026569

Received: 30 January 2020; Published on-line: 30 April 2020


Temperature of the ocular surface in the projection of the ciliary body in rabbits

Dorokhova O., Zborovska O., Meng Guanjun, Zadorozhnyy O.

Filatov Institute of Eye Diseases and Tissue Therapy, NAMS of Ukraine;   Odesa (Ukraine)

E-mail:  dorochovaa@gmail.com

TO CITE THIS ARTICLE: Dorokhova O, Zborovska O, Meng Guanjun, Zadorozhnyy O. Ocular surface temperature in the projection of the ciliary body in rabbits. J.ophthalmol.(Ukraine).2020;2:65-69. http://doi.org/10.31288/oftalmolzh202026569

 

Background: Studies on local body temperatures improve the potential for analysis of biological processes in organs and tissues of the body. A study on changes in ocular surface temperature in an animal model of non-infectious uveitis for objectively assessing ocular inflammation is planned for the future.

Purpose: To determine normal temperatures of the ocular surface in the projection of the ciliary body in rabbits.

Material and Methods: Temperature of the ocular surface in the projection of the pars plana was measured in 42 Chinchilla rabbits using a thermoelectric device.

Results: There was no significant difference in mean temperature between the nasal ocular surface and the temporal ocular surface in the projection of the ciliary body (34.13 °С (SD=1.45) against 34.09 °С (SD=1.48), p = 0.57). In addition, there was a very weak correlation of room temperature with body temperature and ocular surface temperature. Mean ocular surface temperature for the right eye was 34.1°С (SD=1.43), and for the left eye, 34.2°С (SD=1.43), but the difference in this measure between the right and left eyes was not significant (р = 0.27). 

Conclusion: There was no significant difference in the temperature of the ocular surface in the projection of the ciliary body between the right and left eyes in the absence of pathological changes. The mean temperature of the ocular surface in the projection of the ciliary body in intact rabbits was 34.1°С (SD=1.4). Temperature of the ocular surface in the projection of the ciliary body in rabbits is characterized by autonomic thermoregulation and is relatively stable at small environmental temperature variations. The pattern of heat exchange in rabbit’s ocular surface allows for modeling of unilateral ocular pathological processes that would have a change in local body temperature in the projection of the ciliary body as an objective marker.

Keywords: objectivization of inflammation assessment, ocular surface temperature, ciliary body, thermoelectric device

 

References

1.Bakbardina LM. [Thermometric diagnostics of inflammatory process in the anterior uvea]. [Abstract of a Thesis for the Degree of Cand Sc (Med)]. Odesa: Filatov Institute of Eye Disease and Tissue Therapy; 1988. Russian.

2.Eremenko AI. [Thermography in the diagnosis of vascular neuritis of the optic nerve]. Oftalmol Zh. 1990;(4):235-9. Russian.

3.Bodaghi B, Cassoux N, Wechsler B, et al. Chronic severe uveitis: etiology and visual outcome in 927 patients from a single center. Medicine (Baltimore). 2001 Jul;80(4):263-70.

Crossref   PubMed 

4.Lahiri BB, Bagavathiappan S, Jayakumar T, et al. Medical applications of infrared thermography: a review. Infrared Phys Technol. 2012 Jul; 55(4): 221–35.

Crossref   PubMed 

5.Bloch-Michel E Nussenblatt RB. International Uveitis Study Group: recommendations for the evaluation of intraocular inflammatory disease. Am J Ophthalmol. 1987 Feb 15;103(2):234-5. 

Crossref  

6.Jabs DA, Nussenblatt RB, Rosenbaum JT, et al. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005 Sep;140(3):509-16.

Crossref   PubMed 

7.Konstantopoulou K, Del'Omo R, Morley AM, et al. Comparative study between clinical grading of anterior chamber flare and flare reading using the Kowa laser flare meter. Int Ophthalmol. 2015 Oct;35(5):629-33. 

Crossref   PubMed   

8.Mahendradas P, Khanna A, Kawali A, Shetty R. Quantification of inflammation in inflammatory eye diseases.  IJRCI. 2014;2:1–4.

Crossref 

9.Kempen JH, Ganesh SK, Sangwan VS. Interobserver agreement in grading activity and site of inflammation in eyes of patients with uveitis. Am J Ophthalmol. 2008 Dec;146(6):813-8.e1. 

Crossref   PubMed 

10.Astakhov IuS, Kuztetsova TI. [Laser flare photometry in clinical practice]. Oftalmologicheskie vedomosti. 2016;9(2):36-44. Russian.

Crossref  

11.Guney E, Tugal-Tutkun I. Symptoms and Signs of Anterior Uveitis. US Ophthalmic Rev. 2013;6(1):33-7.

Crossref  

12.Herbort CP, Guex-Crosier Y, de Ancos E, et al. Use of laser flare photometry to assess and monitor inflammation in uveitis. Ophthalmology. 1997 Jan;104(1):64-71.

Crossref  

13.Ladas JG, Wheeler NC, Morhun PJ, et al. Laser flare-cell photometry: methodology and clinical applications. Surv Ophthalmol. 2005 Jan-Feb;50(1):27-47.

Crossref   PubMed  

14.Tugal-Tutkun I, Herbort CP. Laser flare photometry: a noninvasive, objective, and quantitative method to measure intraocular inflammation. Int Ophthalmol. 2010;30:453–64.

Crossref   PubMed  

15.Gonzales CA, Ladas JG, Davis JL, Feuer WJ, Holland GN. Relationships Between Laser Flare Photometry Values and Complications of Uveitis. Arch Ophthalmol. 2001 Dec;119(12):1763-9.

Crossref   PubMed  

16.Yeo TH, Ilangovan S, Keane PA, et al. Discrepancies in assessing anterior chamber activity among uveitis specialists. Jpn J Ophthalmol. 2016 May;60(3):206-11. 

Crossref    PubMed  

17.Chernookova VA. [Clinical and functional patterns of oculo-ocular reflexes in unilateral mechanical ocular trauma]. [Abstract of a Thesis for the Degree of Cand Sc (Med)]. Moscow: Moscow Helmholtz Research Institute for Eye Diseases; 2007. Russian.

18.Chereshnev VA, Gusev EYu, Yurchenko LN. [Systemic Inflammation: Myth or Reality?]. Vestnik rossiiskoi nauki. 2004;74(3):219-27. Russian.

19.Anatychuck LI, Pasyechnikova NV, Zadorozhnyy OS, et al. [Original device and approaches to the study of temperature distribution in various eye segments (experimental study). J. Ophthalmol. (Ukraine). 2015;6:50-3. 

20.Schwartz B. Environmental temperature and the ocular temperature gradient. Arch Ophthalmol. 1965 Aug;74:237-43.

Crossref  PubMed

21.Anatychuck LI,  Pasyechnikova NV, Zadorozhnyy OS, et al. [Temperature distribution in various compartments of the rabbit eye at various environmental temperatures].Oftalmologiia. Vostochnaia Evropa. 2015;4:60-8. Russian.

22.Freeman RD, Fatt I. Environmental influences on ocular temperature. Invest Ophthalmol. 1973 Aug;12(8):596-602.

 

The authors certify that they have no conflicts of interest in the subject matter or materials discussed in this manuscript.