J.ophthalmol.(Ukraine).2021;3:61-65.
http://doi.org/10.31288/oftalmolzh202136165
Received: 21 January 2021; Published on-line: 29 June 2021
Modern aspects of using of ultrasonic energy in cataract and vitreoretinal surgery
B. M. Aznabaev, T. I. Dibaev, T. R. Mukhamadeev, A. S. Vafiev, G. M. Idrisova
Bashkir State Medical University;
ZAO Optimedservis; Ufa (Russia)
E-mail: idguma@mail.ru
TO CITE THIS ARTICLE:Aznabaev BM, Dibaev TI, Mukhamadeev TR, Vafiev AS, Idrisova GM. Modern aspects of using of ultrasonic energy in cataract and vitreoretinal surgery. J.ophthalmol.(Ukraine).2021;3:61-65. http://doi.org/10.31288/oftalmolzh202136165
The review demonstrates current data on the nature of ultrasound, its effect on biological structures and the possibilities of using ultrasound for the diagnosis, conservative and surgical treatment of eye diseases. The article contains descriptions of technologies of cataract surgery using ultrasonic energy, as well as new possibilities of using ultrasound not only to remove the nucleus, but also to remove the cortex of the lens, and modern applications of the energy of ultrasound in vitreoretinal surgery.
Кey words: ultrasound, phacoemulsification, ultrasonic aspiration of cortex, ultrasonic vitrectomy, vitreoretinal surgery
Disclaimers. We declare that the views expressed in the submitted article are our own and not an official position of the institution or funder.
Conflict of interest. We declare that we have no conflict of interest.
Reference
1.Akopyan BV, Ershov YuA. The basics of the interaction of ultrasound with biological objects: Ultrasound in medicine, veterinary medicine and experimental biology. Moscow: Izd. MGTU im NE Baumana; 2005. 224 p. In Russian.
2.Fridman FE, Gundorova RA, Kodzov MB. Ultrasound in ophthalmology. Moscow: Medicine; 1989. 256 p. In Russian.
3.Gardner SE, Frantz RA, Schmidt FL. Effect of electrical stimulation on chronic wound healing: a meta-analysis. Wound Repair Regen. 1999; 7 (6): 495-503.
4.Dalecki D, Raeman CH, Child SZ, Cox C, Francis CW, Meltzer RS, et al. Hemolysis in vivo from exposure to pulsed ultrasound. Ultrasound Med Biol. 1997; 23 (2): 307-313.
5.Carovac A, Smajlovic F, Junuzovic D. Application of Ultrasound in Medicine. Acta Inform Med. 2011; 19(3): 168–171.
6.Ranganayakulu SV, Rao NR, Gahane L. Ultrasound applications in Medical Sciences. IJMTER. 2016; 03 (02): 287-293.
7.Mundt GH, Hughes WE. Ultrasonics in ocular diagnosis. Am J Ophthalmol. 1956; 41 (3): 488–498.
8.Oksala A, Lehtinen A. Diagnostic value of ultrasonics in ophthalmology. Ophthalmologica. 1957; 134 (3): 387–395.
9.Marmur RK. Ultrasonic therapy and diagnosis of eye diseases. Kiev: Zdorovya; 1974. 166 p. In Russian.
10.Baum G, Greenwood I. The application of ultrasonic locating techniques to ophthalmology: theoretic considerations and acoustic properties of ocular media: Part 1. Reflective properties. Am J Ophthalmol. 1958; 46 (5): 319–329.
11.Ossoinig KC. Standardized echography: basic principles, clinical applications and results. Int Ophthalmol Clin. 1979; 19 (4): 127–210.
12.Bronson NR, Turner FT. A simple B scan ultrasonoscope. Arch Ophthalmol. 1973; 90 (3): 237–238.
13.Aburn NS, Sergott RC. Orbital colour Doppler imaging. Eye. 1993; 7: 639–647.
14.Guthoff R, Berger RW, Winkler Р. Doppler ultrasonography of the ophthalmic and central retinal vessels. Arch Ophthalmol. 1991; 109 (4): 532–536.
15.Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS. Clinical use of ultrasound biomicroscopy. Ophthalmology. 1991; 98 (3): 287–295.
16.Kiseleva TN, Zaitsev MS, Lugovkina KV. The Safety of Diagnostic Ultrasound in Ophthalmology. Ophthalmology in Russia. 2018; 15 (4): 447–454. In Russian.
17.Kelman CD. Phaco emulsification and aspiration. A new technique of cataract removal. A preliminary report. Am J Ophthalmol. 1967; 64 (1): 23–35.
18.Kelman CD. Phaco-emulsification and aspiration: A progress report. Am J Ophthalmol. 1969; 67(4): 464-477.
19.Cimino WW, Bond LJ. Physics of ultrasonic surgery using tissue fragmentation: part I. Ultrasound Med Biol. 1996; 22 (1): 89-100.
20.Pacifico R. Ultrasonic energy in phacoemulsification: Mechanical cutting and cavitation. J Cataract Refract Surg. 1994; 20 (3): 338-341.
21.Packer M, Fishkind WJ, Fine IH, Seibel BS. The physics of phaco: A review. J Cataract Refract Surg. 2006; 31 (2): P. 424-431.
22.Gupta I, Cahoon JM, Gardiner G, Garff K, Henriksen BS, Pettey JH, et al. Effect of increased vacuum and aspiration rates on phacoemulsification efficiency. J Cataract Refract Surg. 2015; 41 (4): 836-841.
23.Hayashi K, Hayashi H, Nakao F, Hayashi F. Risk factors for corneal endothelial injury during phacoemulsification. J Cataract Refract Surg. 1996; 22 (8): 1079-1084.
24.Beesley RD, Olson RJ, Brady SE. The effects of prolonged phacoemulsification time on the corneal epithelium. Ann. Ophthalmol. 1986; 18 (6): 216-219, 222.
25.Sippel KC, Pineda R. Phacoemulsification and thermal wound injury. Semin Ophthalmol. 2002; 17: 102-109.
26.Holst A, Rolfsen W, Svensson B, Ollinger K, Lundgren B. Formation of free radicals during phacoemulsification. Curr Eye Res. 1993; 12 (4): 359-365.
27.Cameron MD, Poyer JF, Aust SD. Identification of free radicals produced during phacoemulsification. J Cataract Refract Surg. 2001; 27 (3): 463-470.
28.Topaz M, Shuster V, Assia EI, Meyerstein D, Meyerstein N, Mazor D, et al. Acoustic cavitation in phacoemulsification and the role of antioxidants. Ultrasound Med Biol. 2005; 31 (8): 1123-1129.
29.Yow L, Batsi S. Physical and mechanical principles of phacoemulsification and their clinical relevance. Indian J Ophthalmol. 1997; 45: (4): 241-249.
30.Davison JA. Bimodal capsular bag phacoemulsification: A serial cutting and suction ultrasonic nuclear dissection technique. J Cataract Refract Surg. 1989; 15 (3): 272–282.
31.Gimbell HV. Divide and conquer nucleofractis phacoemulsification: development and variations. J Cataract Refract Surg. 1991; 17 (3): 281-291.
32.Badoza D, Mendy JF. Phacoemulsification using the burst mode. J Cataract Refract Surg. 2003; 29 (6): 1101-1105.
33.Fine IH, Hoffman RS, Packer M. New phacoemulsification technologies. J Cataract Refract Surg. 2002; 28 (6): 1054-1060.
34.Fine IH, Hoffman RS, Packer M. Power modulations in new phacoemulsification technology: Improved outcomes. J Cataract Refract Surg. 2004; 30 (5): 1014-1019.
35.Alio JL, Fine IH. Minimizing incisions maximizing outcomes in cataract surgery. NY: Springer; 2010. 319 p.
36.Seibel BS. Phacodynamics: Mastering the Tools and Techniques of Phacoemulsification Surgery. Fourth Edition. NY: SLACK Inc; 2004. 400 p.
37.Aznabaev BM, Ramazanov VN, Mukhamadeev TR. New phacoemulsification ultrasound power modulation and experimental estimation of its efficiency. Refraktsionnaya khirurgiya i oftal'mologiya. 2006; 6(1): 30-37. In Russian.
38.Aznabaev BM, Noskov VM, Ramazanov VN, Rakhimov AF, Dibaev TI, Mukhamadeev TR. Ultrasonic instrument of phacoemulsifier with three-dimensional vibrations: patent RF, № 2603718 C2; 2016. In Russian.
39.Temirov N.E. Hydromonitor phacofragmentation and vitrectomy. Theoretical, experimental, clinical substantiation. The Russian Annals of Ophthalmology. 1982; (2): 20-25. In Russian.
40.Mackool RJ, Brint SF. AquaLase: a new technology for cataract extraction. Curr Opin Ophthalmol. 2004; 15: 40-43.
41.Hoffman RS, Fine IH, Packer M, Brown LK. Comparison of sonic and ultrasonic phacoemulsification using Staar Sonic Wave system. J Cataract Refract Surg. 2002; 28 (9): 1581-1584.
42.Kopaev SYu. Clinical and experimental justification for the combined use of neodymium YAG 1.44 μm and helium-neon 0.63 μm lasers in cataract surgery [dissertation]. [Moscow]. The S. Fyodorov Eye Microsurgery Federal State Institution. 2014; 338 p. In Russian.
43.Kopaeva VG, Andreev YuV. Laser cataract extraction. М.: Oftal'mologiya; 2011. 262 p. In Russian.
44.Dalton M. Laser-assisted cataract surgery: Bringing new technologies into the fold. EyeWorld, 2011. [cited 2020 Sep 4]; Available from: http://www.eyeworld.org/article-bringing-new-technologies-into-the-fold
45.Kostenev SV. Femtosecond laser technology – a development vector – cataract surgery. Vestnik novykh meditsinskikh tekhnologii. 2012; 12(3): 112-114. In Russian.
46.Mendez A, Manriquez AO. Comparison of Effective Phacoemulsification and Pulsed Vacuum Time for Femtosecond Laser–Assisted Cataract Surgery. ASCRS Cornea Congress. San Diego, 2015. [cited 2020 Sep 4]; Available from: https://ascrs.confex.com/ascrs/15am/webprogram/Paper18055.html
47.Buratto L, Werner L. Zanini M, Apple DJ. Phacoemulsification: Principles and Techniques, Second Edition. SLACK Inc; 2003. 768 p.
48.Federal clinical guidelines for the provision of eye care for patients with age-related cataracts. Expert Council on the problem of cataract surgical treatment. Interregional Association of Ophthalmologist. Moscow: Ophthalmology; 2015. 32 p. In Russian.
49.Aznabaev BM, Dibaev TI, Mukhamadeev TR, Idrisova GM. Clinical performance of system for ultrasonic cortex aspiration during phacoemulsification. Saratov Journal of Medical Scientific Research. 2018; 14 (4): 811–815. In Russian.
50.Aznabaev BM, Dibaev TI, Mukhamadeev TR, Idrisova GM. Corneal microarchitectonics in phacoemulsification using a system for ultrasonic cortex aspiration. Sovremennye tekhnologii v oftal'mologii. 2019; 5 (30): 9-13. In Russian.
51.Idrisova GM. Thermal safety of a system for ultrasonic aspiration of lens cortex. Saratov Journal of Medical Scientific Research. 2018; 14 (4): 919–922. In Russian.
52.Girard LJ, Rodriguez J, Mailman ML, Romano TJ. Cataract and Uveitis management by pars plana lensectomy and vitrectomy by ultrasonic fragmentation. Retina. 1985; 5 (2): 108-114.
53.Kossovsky LV, Stolyarenko GE, Kossovskaya IL. Application of the domestic ultrasonic phakofragmentator in eye surgery (communication 2). The Russian Annals of Ophthalmology. 1983; (3): 29-33. In Russian.
54.Bopp S, El-Hifnaw E, Bornfeld N, Laqua H. Retinal lesion experimentally produced by intravitreal ultrasound. Graefe’s Arch Clin Exp Ophthalmol. 1993; 231: 295-302.
55.Machemer R. A new concept for vitreous surgery. Surgical technique and complication. Am J Ophthalmol. 1972; 74 (6): 1022-1033.
56.Aznabaev BM, Shirshov MV, Mukhamadeev TR, Ramazanov VN, Yamlikhanov AG, Dibaev TI. New algorithm of vitrectomy system control. Kataraktalnaya i refraktsionnaya khirurgiya. 2013; 13 (2): 37-40. In Russian.
57.Aznabaev BM, Dibaev TI, Mukhamadeev TR, Vafiev AS, Shavaliev IKh. Ultrasonic vitrectomy: performance evaluation in experimental and clinical conditions. Practical Medicine. 2018; 16 (4): 56-60. In Russian.
58.Saxena S, Meyer CH, Ohji M, Akduman L. Vitreoretinal surgery. Jp Medical; 2012. 442 p.
59.Stanga PE, Pastor-Idoate S, Zambrano I, Carlin P, McLeod D. Performance analysis of a new hypersonic vitrector system. PLos One. 2017; 12 (6): e0178462.
60.Pastor-Idoate S, Bonshek R, Irion L, Zambrano I, Carlin P, Mironov A, et al. Ultrastructural and histopathologic findings after pars plana vitrectomy with a new hypersonic vitrector system. Qualitative preliminary report. PLoS One. 2017; 12(4): e0173883.
61.Wuchinich D. Ultrasonic vitrectomy instrument. Physics Procedia. 2015; 63: 217-222.
62.Aznabaev BM, Dibaev TI, Mukhamadeev TR, Vafiev AS, Shavaliev IKh. Twenty-five gauge ultrasonic vitrectomy. Experimental and Clinical Performance Analysis. Retina. 2020; 40 (7): 1443-1450.
63.Pavlidis M. Two-Dimensional Cutting (TDC) Vitrectome: In Vitro Flow Assessment and Prospective Clinical Study Evaluating Core Vitrectomy Efficiency versus Standard Vitrectome. J Ophthalmol. 2016; 2016: 3849316.
64.Abulon DJ, Buboltz DC. Porcine Vitreous Flow Behavior During High-Speed Vitrectomy up to 7500 Cuts per Minute. Transl Vis Sci Technol. 2016; 5(1): 7.
65.Hubschman JP, Bourges JL, Tsui I, Reddy S, Yu F, Schwartz SD. Effect of cutting phases on flow rate in 20-, 23- and 25-gauge vitreous cutters. Retina. 2009; 29(9): 1289-1293.
66.Aznabaev BM, Dibaev TI, Mukhamadeev TR, Vafiev AS, Shavaliev IKh. Thermal imaging characteristics of ultrasonic and pneumatic guillotine 25-gauge vitrectors. Saratov Journal of Medical Scientific Research. 2018; 14 (4): 916–919. In Russian.