J.ophthalmol.(Ukraine).2021;3:34-40.

Fulltext Pdf 

 

http://doi.org/10.31288/oftalmolzh202133440

Received: 11 January 2021Published on-line: 29 June 2021


In vitro investigation of the effect of photosensitizer-mediated 365-nm UV light and 630-670-nm low-energy laser irradiation on the fungal flora, Candida albicans and Fusarium spp

L. F. Troichenko, G. I. Drozhzhyna, A. L. Moloda, L. V. Dolenko 

SI  «The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine"; Odesa (Ukraine)

E-mail: tlf2008@ukr.net

TO CITE THIS ARTICLE:Troichenko LF, Drozhzhyna GI, Moloda AL, Dolenko LV. In vitro investigation of the effect of photosensitizer-mediated 365-nm UV light and 630-670-nm low-energy laser irradiation on the fungal flora, Candida albicans and Fusarium spp. J.ophthalmol.(Ukraine).2021;3:34-40.   http://doi.org/10.31288/oftalmolzh202133440


Background: Infectious corneal ulcers and infectious keratitis are a major global cause of visual impairment and blindness. Although there are numerous antimicrobial agents available, novel methods should be designed to allow for fast and comprehensive microbicidal and microbistatic response on their target with minimum toxic effect to the body in order to preserve vision in patients with severe corneal infections.

Purpose: To assess in vitro the antimicrobial effect of photosensitizer-mediated 365-nm ultraviolet (UV) irradiation in combination with 630-670 nm low-energy laser irradiation on the suspensions of Candida albicans and Fusarium spp.

Material and Methods:  The Mueller-Hinton medium was used to conduct a routine disc diffusion susceptibility test and assess the antimicrobial activity of the preparations.

Methods for exerting effect on test strains of Candida albicans and Fusarium spp isolated from the conjunctival sac: The method of low-energy laser irradiation (clinically, photodynamic therapy or PDT) was as follows. A sterile disc was placed, along with test strains of microorganisms, on the surface of the medium. Methylene blue 0.1% was instilled on the surface of the sterile disc until the disc was completely covered. Thereafter, the disc was irradiated with 630-670-nm low-energy laser for three minutes. The method of UV irradiation (clinically, collagen cross-linking or CXL) was as follows. The sterile disc was placed, along with test strains of microorganisms, on the surface of the medium. Riboflavin 0.1% was instilled on the surface of the sterile disc until the disc was completely covered. Thereafter, the disc was irradiated with 365-nm UV light delivered by the UVX 2000 for 10 minutes.

Results: Growth inhibition zone analysis found that Candida albicans was susceptible to PDT as well as to CXL. The diameter of the growth inhibition zone after treatment with PDT plus CXL plus fluconazole was significantly, 6.3 mm, larger than for the control disc with fluconazole. Fusarium spp was found to be susceptible to PDT plus CXL as well as to PDT plus CXL plus itraconazole, with the diameter of the growth inhibition zone being significantly, 4.2 mm and 7.8 mm, respectively, larger than for the control disc with itraconazole.

Conclusion: In the in vitro experiment, the combination treatment (365-nm UV light using riboflavin 0.1% as a photosensitizer and 630-670-nm low-energy laser irradiation using methylene blue 0.1% as a photosensitizer) we proposed had a demonstrated antimicrobial effect on Candida albicans and Fusarium spp, showing fungal growth inhibition. This experimental study showed that the approach is promising and warrants further research in ophthalmology.

Keywords: ultraviolet irradiation, low-energy laser irradiation, antimicrobial effect, Candida albicans, Fusarium spp

Conflict of Interest Statement: The authors declare no conflict of interest which could influence their opinions on the subject or the materials presented in the manuscript.

 

References

1.Alio JL, Abbouda A, Valle DD, Del Castillo JM, Fernandez JA. Corneal cross linking and infectious keratitis: a systematic review with a meta-analysis of reported cases. J Ophthalmic Inflamm Infect. 2013 May 29;3(1):47.

Crossref   PubMed

2.Gower EW, Keay LJ, Oechsler RA, Iovieno A, Alfonso EC, Jones DB, et al. Trends in fungal keratitis in the United States, 2001 to 2007. Ophthalmology. 2010 Dec;117(12):2263-7.

Crossref   PubMed

3.Garg P. Fungal, mycobacterial, and nocardia infections and the eye: An update. Eye (Lond). 2012 Feb; 26(2): 245–51.

Crossref   PubMed

4.Neroev VV, Petukhova AB, Danilova DYu, et al. [The cross-linking of corneal collagen in treatment of trophic and bacterial ulcers of cornea]. Rossiiskii meditsinskii zhurnal. 2013;(2):25-8. Russian.

5.Maharana PK, Sharma N, Nagpal R, et al. Recent advances in diagnosis and management of Mycotic Keratitis. Indian J Ophthalmol. 2016 May;64(5):346-57.

Crossref   PubMed

6.Zborovska AV, Gorianova IS, Kuriliuk AN. [Efficacy of methylene blue photodynamic therapy with 630-670-nm low-energy laser irradiation in the treatment of patients with fungal keratitis]. Oftalmol Zh. 2012;4:12-5. Russian.Crossref  

7.Spoerl E, Wollensak G, Dittert D, Seiler T. Thermomechanical behavior of collagen-cross-linked porcine cornea. Ophthalmologica. Mar-Apr 2004;218(2):136-40.

Crossref   PubMed

8.Kasparova EA, Yang B, Bocharova YA, Novikov IA. [Application of visible longwave radiation for inactivation of microorganisms]. Vestn Oftalmol. 2020;136(6):42-9. doi: 10.17116/oftalma202013606142. Russian.

Crossref   PubMed

9.Hafezi F, Randleman J, eds. Corneal Collagen Cross‐Linking. Thorofare, NJ: Slack Inc.; 2013:43‐104. 

10.Revankar SG, Sutton DA. Melanized fungi in human disease. Clin Microbiol Rev. 2010 Oct;23(4):884-928.

Crossref   PubMed

11.Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29(1):35–40. 

Crossref   PubMed

12.Chan E, Snibson GR, Sullivan L. Treatment of infectious keratitis with riboflavin and ultraviolet-A irradiation. J Cataract Refract Surg. 2014 Nov;40(11):1919-25.

Crossref   PubMed

13.Tschopp M, Stary J, Frueh BE, Thormann W, Bocxlaer V, Tappeiner C. Impact of Corneal Cross-linking on Drug Penetration in an Ex Vivo Porcine Eye Model. Cornea.  2012 Mar;31(3):222-6.

Crossref   PubMed

14.Stewart M, Lee OT, Wong FF, Schultz DS, Lamy R.Cross-Linking with Ultraviolet-A and Riboflavin Reduces Corneal Permeability. Invest Ophthalmol Vis Sci. 2011 Nov 29;52(12):9275-8.

Crossref   PubMed

15.Martins SA, Combs JC, Noguera G, Camacho W, Wittmann P, Walther R, et al. Antimicrobial efficacy of riboflavin/UVA combination (365 nm) in vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis. Invest Ophthalmol Vis Sci. 2008 Aug;49(8):3402-8.

Crossref   PubMed

16.Schrier A, Greebel G, Attia H, Trokel S, Smith EF. In vitro antimicrobial efficacy of riboflavin and ultraviolet light on Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa. J Refract Surg. 2009 Sep;25(9):S799-802.

Crossref   PubMed

17.Sauer A, Letscher-Bru V, Speeg-Schatz C, Touboul D, Colin J, Candolfi E, Bourcier T. In vitro efficacy of antifungal treatment using riboflavin/UV-A (365 nm) combination and amphotericin B. Invest Ophthalmol Vis Sci. 2010 Aug;51(8):3950-3.

Crossref   PubMed

18.Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T. Safety of UVA—Riboflavin Cross-Linking of the Cornea. Cornea. 2007;26(4):385–9.

Crossref   PubMed

19.Galperin G, Berra M, Tau J, Boscaro G, Zarate J, Berra A. Treatment of fungal keratitis from Fusarium infection by corneal cross-linking. Cornea. 2012 Feb;31(2):176-80. 

Crossref   PubMed

20.Ferrari T, Leozappa M, Lorusso M, Epifani E, Ferrari L. Keratitis treated with ultraviolet A/riboflavin corneal cross-linking: a case report. Eur J Ophthalmol Mar-Apr 2009;19(2):295-7.

Crossref   PubMed

21.Al-Sabai N,  Koppen C, Tassignon MJ. UVA/riboflavin crosslinking as treatment for corneal melting. Bull Soc Belge Ophtalmol. 2010;(315):13-7.

22.Iseli HP, Thiel MA, Hafezi F, Kampmeier J, Seiler T. Ultraviolet A/riboflavin corneal cross-linking for infectious keratitis associated with corneal melts / Iseli HP. Cornea. 2008 Jun;27(5):590-4.

Crossref   PubMed

23.Ehlers N, Hjortdal J. Riboflavin-ultraviolet light induced cross-linking in endothelial decompensation. Acta Ophthalmol. 2008 Aug;86(5):549-51. 

Crossref   PubMed

24.Makdoumi K, Mortensen J, Crafoord S. Infectious keratitis treated with corneal crosslinking. Cornea. 2010 Dec;29(12):1353-8. 

Crossref   PubMed

25.Li Z, Jhanji V, Tao X, Yu H, Chen W, Mu G. Riboflavin/ultraviolet lightmediated crosslinking for fungal keratitis. Br J Ophthalmol.  2013;97(5):669–671.

Crossref   PubMed

26.Makdoumi K, Mortensen J, Sorkhabi O, Malmvall BE, Crafoord S. UV-A riboflavin photochemical therapy of bacterial keratitis: a pilot study. Graefes Arch Clin Exp Ophthalmol. 2012 Jan;250(1):95-102.

Crossref   PubMed

27.Shety R, Nagaraja H, Jayadev C, Shivanna Y, Kugar T. Collagen crosslinking in the management of advanced non resolving

28.microbial keratitis. Br J Ophthalmol. 2014 Aug;98(8):1033-5.

Crossref   PubMed

29.Saglk A, Uçakhan OO, Kanpolat A. Ultraviolet A and riboflavin therapy as an adjunct in corneal ulcer refractory to medical treatment. Eye Contact Lens. - 2013 Nov;39(6):413-5.

Crossref   PubMed

30.Arboleda A, Miller D, Cabot F, Taneja M, Aguilar MC, Alawa K, et al. Assessment of rose bengal versus riboflavin photodynamic

31.therapy for inhibition of fungal keratitis isolates. Am J Ophthalmol. 2014 Jul;158(1):64-70.e2.

Crossref   PubMed

32.Pranita Sahay, Singhal D., Nagpal R., Maharana P.K., Farid M., Gelman R, et al. Pharmacologic therapy of mycotic keratitis. Surv Ophthalmol. May-Jun 2019;64(3):380-400.

Crossref   PubMed

33.Said DG, Elalfy MS, Gatzioufas Z, El Zakzouk ES, Hassan MA, Saif MY, et al. Collagen cross linking with photoactivated riboflavin (PACK CXL) for the treatment of advanced infectious keratitis with corneal melting.Ophthalmology. - 2014 Jul;121(7):1377-82.

Crossref   PubMed

34.Zborovska AV. [Photodynamic therapy using methylene blue as a photosensitizer in the treatment of fungal keratitis]. Oftalmol Zh. 2011;2:54-8. Russian.

Crossref 

35.Pasyechnikova NV, Zborovska AV, Kustrin TB. [Effect of laser-activated methylene blue on Escherichia coli culture]. Oftalmol Zh. 2009;3:60-3. Russian.

Crossref