Oftalmol Zh. 2013;6:79-85.

https://doi.org/10.31288/oftalmolzh201367985

Influence of nicotinamide and preparations containing it on the condition of bioenergy processes in the retina in experimental diabetes

Sakovich VN, Ahmad Abed Al Raheem Abdallah Aqrabawi

Dnepropetrovsk Medical Academy 

Dnipropetrovsk, Ukraine

Introduction. A condition of the oxidant stress is of great importance in triggering mechanisms of damage of the neuroepithelium and vascular endothelium. The increased generation of free-radical forms of oxygen is caused first of all by dysfunctions of mitochondria conditioning urgency of the studies. 

Purpose. To investigate influence of nicotinamide and preparations containing it on the state of bioenergy processes in the retina by the activity condition of mitochondrial enzymes in experimental diabetes.

Material and methods. The activity of succinate dehydroxenase, piruvate dehydrogenase, akeratoglutarate dehydrogenase, cytochrome oxidase and ATP in the retina in modelling streptozotocin diabetes (55 mg per 1 kg of weight) and introductions of nicotinamide, cytoflavin, catachrome and cytoflavin together with catachrome in the corresponding groups in the experiment on animals (65 Vistar rats) were determined.

Results. In modelling streptozotocin diabetes there was determined essential eduction in the activity of mitochondrial enzymes and adenosine triphosphatase regarding the norm in the retina of rats. The application of preparations under investigation exerted substantial stabilizing influence on the enzymes activity in the retina against the background of modeled streptozotocin diabetes.

Key words: diabetic retinopathy, streptozotocin-induced diabetes, the retina of the eye, bioenergetic processes, cytoflavin, cytochrome.

References

1.Aleksandrovskii AYa. The molecular mechanisms of diabetic complications. Biokhimiia. 1998; 63(11): 1470- 9. Russian.

2.Leus NF. Metabolic mechanisms of development and prospects of medical treatment of diabetic retinopathy. Oftalmol Zh. 2003; 5: 75- 80. Russian.

3.Nasledov A. SPSS computer analysis of data in psychology and social sciences. Spb: Piter; 2005. 416 p.

4.New methods biochemical analysis. Izd Leningradskogo univer. 1991. 395 p.

5.Poltorak VV, Blokh KO, Malashenko AM. Experimental modeling of diabetes to study the specific effect of novel anti-diabetic agents. Guidelines. Kharkov; 1991. 19 p.

6.Aliciguzel Y, Ozen I, Aslan M. Activities of xanthine oxidoreductase and antioxidant enzymes in different tissues of diabetic rats. J. Lab. & Clin. Med. 2003; 142 (3): 172-7.
Crossref

7.Barber AJ. A new view of diabetic retinopathy: a neuro-degenerative disease of the eye. Prog. In Neuro-Psychopharm. & Biol. Psych. 2003; 27: 283-90.
Crossref

8.Bearse M, Adams A, Han Y. A multifocal electroretinogram model predicting the development of diabetic retinopathy. Ret. & Eye Res. 2006; 25: 425-48.
Crossref

9.Belenky P, Bogan KL, Brenner C. NAD+metabolism in health and disease TRENDS in Biochem. Sci. 2006; 32: 12-19.
Crossref

10.Bergamini CM, Gambetti S, Dondi A. Oxygen, reactive oxygen species and tissue damage. Cur.Pharm. Design. 2004; 10 (14): 1611-26.
Crossref

11.Bergmeyer H. U. Methoden der enzymatischen Analyse. Berlin. 1986. 2254-65.

12.Bloomgarden ZT. Diabetic retinopathy and diabetic neuropathy. J. Diabetes Care. 2007; 30 (3): 760-5.
Crossref

13.Brownlee M. The pathobiology of diabetic complications (a unifying mechanism). J. Diabetes. 2005; 54: 1615- 25.
Crossref

14.Du Y, Miller CM, Kern TS. Hyperglycemia increases mi-tochondrial superoxide in retina and retinal cells. Free Rad. Biol. & Med. 2003; 35 (11): 1491-9.
Crossref

15.Kanwar M, Chan PS, Kern TS. Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. Invest. Ophthalmol. Vis. Sci. 2006; 47: 1594-9.

16.Klaidman LK, Mukherjee SK, Adams JD. Oxidative changes in brain pyridine nucleotides and neuroprotection using nicotinamide Biochim. Biophys. Acta. 2001; 1525: 136-48.
Crossref

17.Kowluru RA. Diabetic retinopathy: mitochondrial disfunction and retinal capillary cell death. Antioxid. & Redox. Signal. 2005; 7 (11-12): 1581-7.
Crossref

18.Kowluru RA, Abbas SN. Diabetes-induced mitochondrial dysfunction in the retina. Invest. Ophthalmol. Vis. Sci. 2003; 44 (12): 5327- 34.
Crossref

19.Kowluru RA, Atasi L, Ho YS. Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 2006; 47 (4): 1594-9.
Crossref

20.Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy. Exp. Diabet. Res. 2007. 12 p.
Crossref

21.Kowluru RA, Engerman RL, Case GL. Retinal glutamate in diabetes and effect of antioxidants. Neurochem. Int. 2001; 38: 385-90.
Crossref

22.Kowluru RA, Kanwar M, Kennedy A. Metabolic memory and accumulation of peroxynitrite in retinal capillaries. Exp. Diiabet. Res. 2007. 7 p.
Crossref

23.Kowluru R. A, Kowluru V, Xiong Y. Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Rad. Biol. & Med. 2006; 41 (8): 1191-6.
Crossref

24.Lorenzi M, Gerhardinger C. Early cellular and molecular changes induced by diabetes in the retina. Diabetologia. 2001; 44: 791-804.
Crossref

25.Maassen JA, Hart LM, Essen E. Mitochondrial diabetes: Molecular mechanisms and clinical presentation. Diabetes. 2004; 53 (1): S103 S109.
Crossref

26.Nicholls DG, Budd S L. Mitochondria and neuronal survival. Physiolog. Rev. 2000; 80 (1): 315-60.
Crossref

27.Nishikawa T, Edelstein D, Du XL. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000; 404: 787-90.
Crossref

28.Rosca MG, Mustata TG, Kinter MT. Glication of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am. J. Physiol. Renal. Physiol. 2005; 289: F420-F430.
Crossref

29.Sauve AA. NAD+ and vitamin B3: from metabolism to therapies J. Pharm Exp. Ther. 2008; 324: 883-93.
Crossref

30.Stitt AW, Curtis TM. Advanced glycation and retinal pa-thology during diabetes. Farmac. Rep. 2006; 57: 156-68.

31.Tyrberg M, Ponjavic V, Lovestam-Adrian M. Multifocal electroretinography (mfERG) in insulin dependent diabetics with and without clinically apparent retinopathy. Doc. Ophthalmol. 2005; 110: 2-3.
Crossref

32.Wang J, Zhai Q, Chen Y. A local mechanism mediates NAD-dependent protection of axon degeneration J. Cell Biol. 2005; 170: 349-55.
Crossref

33.Wilkinson-Berka J, Miller A. Update on the treatment of diabetic retinopathy. The Scientific World J. 2008; 8: 98120.
Crossref