Офтальмол. журн. — 2009. — № 1-2. — С. 92-97.

Полный текст Pdf 

УДК 617.735-002-02:616-379-088.64-085

http://doi.org/10.31288/oftalmolzh2009129297

НАРУШЕНИЯ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ МИТОХОНДРИАЛЬНЫХ СТРУКТУР СЕТЧАТКИ ПРИ ЭКСПЕРИМЕНТАЛЬНОМ ДИАБЕТЕ И ВОЗМОЖНОСТИ ИХ КОРРЕКЦИИ

Т. И. Гладуш, канд. мед. наук, Е. И. Байдан, ст. лаборант

ГУ "Институт глазных болезней и тканевой терапии им. В. П. Филатова АМН Украины"

Вивчався функціональний стан мітохондрій сітчастої оболонки при моделюванні експериментального діабету у щурів.

Встановлено зниження активності ферментативних систем мітохондріального матриксу та внутрішньої мембрани мітохондрій, що свідчить про порушення окислювально-відносних і біоенергетичних процесів у ретинальній тканині при експериментальному діабеті. Одержані дані розкривають найважливішу ланку механізму розвитку діабетичної ретинопатії при моделюванні діабету.

Наведені також дані про можливість корекції функціонального статусу мітохондрій за допомогою тіолових препаратів (ацетилцистеїн або таурин) і біофлавоноїдів (рутин).

Ключевые слова: диабетическая ретинопатия, моделирование диабета, состояние митохондрий, коррекция.

Ключові слова: діабетична ретинопатія, моделювання діабету, стан мітохондрій, корекція.

 

ЛИТЕРАТУРА

1.Александровский А. Я. Молекулярные механизмы развития диабетических осложнений // Биохимия. — 1998. — Т. 63, № 11. — С. 1470-1479.

2.Леус Н. Ф. Метаболические механизмы развития и перспективы медикаментозного лечения диабетической ретинопатии // Офтальмол. журн. — 2003. — № 5. — С. 75-80.

3.Леус Н. Ф., Олейник Т. В., Коломийчук С. Г. Влияние препаратов витамина В1 (кокарбоксилазы и бенфотиамина) на биофизические и метаболические процессы в сетчатке и плазме крови белых крыс со стрептозотоциновым диабетом // Офтальмол. журн. — 2007. —№ 2. — С. 70-75.

4.Наследов А. SPSS компьютерный анализ данных в психологии и социальных науках. — СПб.: Питер, 2005. — 416 с.

5.Новые методы биохимического анализа. — Изд. Ленинградского универ., 1991. — 395 с.

6.Полторак В. В., Блох К. О., Малашенко А. М. Экспериментальное моделирование сахарного диабета для изучения специфического эффекта новых антидиабе-тических веществ / Методические рекомендации. — Харьков, 1991, — 19 с.

7.Aliciguzel Y., Ozen I., Aslan M. Activities of xanthine oxidoreductase and antioxidatn enzymes in different tissues of diabetic rats // J. Lab. & Clin. Med. — 2003. — Vol. 142 (3). — P. 172-177.

Crossref 

8.Barber A. J. A new view of diabetic retinopathy: a neurodegenerative disease of the eye // Prog. In Neoro-Psychopharm. & Biol. Psych. — 2003. — Vol. 27. — P. 283-290.

Crossref 

9.Bearse M., Adams A., Han Y. A multifocal electroretinogram model predicting the development of diabetic retinopathy // Ret. & Eye Res. — 2006. — Vol. 25. — P. 425-448.

Crossref  PubMed

10.Bergamini C. M., Gambetti S., Dondi A. Oxygen, reactive oxygen species and tissue damage // Cur. Pharm. Design. — 2004. — Vol. 10 (14). — P. 1611-1626.

Crossref  PubMed

11.Bergmeyer H. U. Methoden der enzymatischen Analyse. — Herausgegeben von H. U. Bergmeyer. — Berlin. —1986. — S. 2254-2265.

12.Bloomgarden Z. T. Diabetic retinopathy and diabetic neuropathy // J. Diabetes Care. — 2007. — Vol. 30 (3). — P. 760-765.

Crossref  PubMed

13.Brownlee M. The pathobiology of diabetic complications (a unifying mechanism) // J. Diabetes. — 2005. — Vol. 54. — P. 1615-1625.

Crossref   PubMed

14.Du Y., Miller C. M., Kern T. S. Hyperglecemia increases mitochondrial superoxide in retina and retinal cells // Free Rad. Biol. & Med. — 2003. — Vol. 35 (11). — P. 1491-1499.

Crossref   PubMed

15.Kanwar M., Chan P.-S., Kern T. S. Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase // Invest. Ophthalmol. Vis. Sci. — 2006. — Vol. 47. — P. 1594-1599.

16.Kowluru R. A. Diabetic retinopathy: mitochondrial disfunction and retinal capillare cell death // Antioxid. & Re-dox. Signal. — 2005. — Vol. 7 (11-12). — P. 1581-1587.

Crossref   PubMed

17.Kowluru R. A., Abbas S. N. Diabetes-induced mitochondrial dysfunction in the retina // Invest. Ophthalmol. Vis. Sci. — 2003. — Vol. 44 (12). — P. 5327-5334.

Crossref  PubMed

18.Kowluru R. A., Atasi L., Ho Y. S. Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy // Invest. Ophthalmol. Vis. Sci. — 2006. — Vol. 47 (6). — P. 1594-1599.

Crossref   PubMed

19.Kowluru R. A., Chan P. S. Oxidative stress and diabetic retinopathy // Exp. Diabet. Res. — 2007. — 12 p.

Crossref   PubMed

20.Kowluru R. A., Engerman R. L., Case G. L. Retinal glutamate in diabetes and effect of antioxidants // Neurochem. Int. — 2001. — Vol. 38. — P. 385-390.

Crossref 

21.Kowluru R. A., Kanwar M., Kennedy A. Metabolic memory and accumulation of peroxynitrite in retinal capillaries //Exp. Diabet. Res. — 2007. — 7 p.

Crossref   PubMed

22.Kowluru R. A., Kowluru V., Xiong Y. Overexpression of mitochondrial superoxide dismutase in mice protects the retina form diabetes-induced oxidative stress // Free Rad. Biol. & Med. — 2006. — Vol. 41 (80). — P. 1191-1196.

Crossref   PubMed

23.Lorenzi M., Gerhardinger C. Early cellular and molecular changes induced by diabetes in the retina // Diabetologia. — 2001. — Vol. 44. — P. 791-804.

Crossref   PubMed

24.Maasen J. A., Hart L. M., Essen E. Mitochondrial diabetes: Molecular mechanisms and clinical presentation //Diabetes. — 2004. — Vol. 53 (1). — P. S103-S109.

Crossref   PubMed 

25.Nicholls D. G., Budd S. L. Mitochondria and neuronal survival // Physiolog. Rev. — 2000. — Vol. 80 (10). — P. 315-360.

Crossref   PubMed

26.Nishikawa T., Edelstein D., Du X. L. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage // Nature. — 2000. — Vol. 404. — P. 787-790.

Crossref   PubMed

27.Obrosova I. G., Drel V. R., Kumagai A. K. Early diabetes-induced biochemical changes in the retina: comparison of rat and mouse models // Diabetologia. — 2006. — Vol. 49. — P. 2525-2533.

Crossref   PubMed

28.Obrosova I. G., Abatan O., Larkin D. Taurine replacement attenuates hyperalgesia and abnormal calcium signaling in sensory neurons of STZ-D rats // Am. J. Physiol. Endocrinol. Metab. — 2005. — Vol. 288. — P. E29-E36.

Crossref   PubMed

29.Roh Y., Moon C., Kim S. Glutathione depletion induces differential apoptosis in cells of mouse retina, in vivo // Neuroscience Let. — 2007. — Vol.l 417 (3). — P. 266-270.

Crossref   PubMed

30.Rosca M. G., Mustata T. G., Kinter M. T. Glication of mi-tochondrial proteins from diabetic rat kidney is associated with excess superoxide formation // Am. J. Physiol. Renal. Physiol. — 2005. — Vol. 289. — P. F420-F430.

Crossref   PubMed

31.Stitt A. W., Curtis T. M. Advanced glycation and retinal pathology during diabetes // Farmac. Rep. —  2006. —Vol. 57. — P. 156-168.

32.Tyrberg M., Ponjavic V., Lovestam-Adrian M. Multifocal electroretinography (mfERG) in insulin dependent diabetics with and without clinically apparent retinopathy // Doc. Ophthalmol. — 2005. — Vol. 110. — P. 2-3.

Crossref    PubMed

33.Wilkinson-Berka J., Miller A. Update on the treatment of diabetic retinopathy // The Scientific World J. — 2008. — Vol. 8. — P. 98-120.

Crossref   PubMed

34.Xia P., Kramer R. M., King G. L. Identification of the mechanisms for the inhibition of Na+, K+-adenosine triphosphatase by hyperglycemia involving activation of protein kinase C and cytosolic phospholipase A2 // J. Clin. Invest. — 1995. — Vol. 96. — P. 733-740.

Crossref   PubMed